An analytical singular element with arbitrary high-order precision is constructed using the analytical symplectic eigenfunctions of an annular sector thin plate with both straight sides free. These values can be used to describe the local stress singularities near an arbitrary V-notch or a crack tip. Numerical examples of Kirchhoff’s plate bending problem with V-shaped notches are given by applying the Local-Global method. This method combines the present analytical singular element and the conventional finite element method. The numerical results show that the present method is an effective numerical technique for analysis of Kirchhoff plate bending problems with boundary stress singularities.
References
1.
Williams
, M. L.
, 1961, “The Bending Stress Distribution at the Base of a Stationary Crack
,” ASME J. Appl. Mech.
, 28
, pp. 78
–82
.2.
Sih
, G. C.
, Paris
, P. C.
, and Erdogan
, F.
, 1962, “Crack Tip Stress-Intensity Factors for Plane Extension and Plate Bending Problems
,” ASME J. Appl. Mech.
, 29
, pp. 306
–310
.3.
Wilson
, W. K.
, and Thompson
, D. G.
, 1971, “On the Finite Element Method for Calculating Stress Intensity Factors for Cracked Plates in Bending
,” Eng. Fract. Mech.
, 3
(2
), pp. 97
–102
.4.
Su
, R. K. L.
, and Sun
, H. Y.
, 2002, “Numerical Solution of Cracked Thin Plates Subjected to Bending, Twisting and Shear Loads
,” Int. J. Fracture
, 117
, pp. 323
–335
.5.
Wang
, Y. H.
, Tham
, L. G.
, Lee
, P. K. K.
, and Tsui
, Y.
, 2003, “A Boundary Collocation Method for Cracked Plates
,” Comput. Struct.
, 81
, pp. 2621
–2630
.6.
Zehnder
, A. T.
, and Viz
, M. J.
, 2005, “Fracture Mechanics of Thin Plates and Shells Under Combined Membrane, Bending, and Twisting Loads
,” Appl. Mech. Rev.
, 58
(1
), pp. 37
–48
.7.
Palani
, G. S.
, Iyer
, N. R.
, and Dattaguru
, B.
, 2006, “A Generalised Technique for Fracture Analysis of Cracked Plates Under Combined Tensile, Bending and Shear Loads
,” Comput. Struct.
, 84
, pp. 2050
–2064
.8.
Leung
, A. Y. T.
, Xu
, X. S.
, Zhou
, Z. H.
, and Wu
, Y.F.
, 2009, “Analytic Stress Intensity Factors for Finite Elastic Disk Using Symplectic Expansion
,” Eng. Fract. Mech.
, 76
, pp. 1866
–1882
.9.
Barsoum
, R. S.
, 1976, “A Degenerate Solid Element for Linear Fracture Analysis of Plate Bending and General Shells
,” Int. J. Numer. Meth. Eng.
, 10
, pp. 551
–564
.10.
Ahmad
, J.
, and Loo
, F. T. C.
, 1979, “Solution of Plate Bending Problems in Fracture Mechanics Using a Specialized Finite Element Technique
,” Eng. Fract. Mech.
, 11
, pp. 661
–673
.11.
Chen
, W. H.
, and Chen
, P. Y.
, 1984, “A Hybrid-Displacement Finite Element Model for the Bending Analysis of Thin Cracked Plates
,” Int. J. Fract.
, 24
, pp. 83
–106
.12.
Leung
, A. Y. T.
, and Su
, R. K. L.
, 1994, “Mode I Crack Problems by Fractal Two Level Finite Element Methods
,” Eng. Fract. Mech.
, 48
(6
), pp. 847
–856
.13.
Leung
, A. Y. T.
, and Su
, R. K. L.
, 1995, “Mixed-Mode Two-Dimensional Crack Problem by Fractal Two Level Finite Element Method
,” Eng. Fract. Mech.
, 51
(6
), pp. 889
–895
.14.
Leung
, A. Y. T.
, and Su
, R. K. L.
, 1996, “Fractal Two-Level Finite Element Method for Cracked Kirchhoff’s Plates Using DKT Elements
,” Eng. Fract. Mech.
, 54
(5
), pp. 703
–711
.15.
Leung
, A. Y. T.
, and Su
, R. K. L.
, 1996, “Fractal Two-Level Finite Element Analysis of Cracked Reissner’s Plate
,” Thin-Walled Struct.
, 24
(4
), pp. 315
–334
.16.
Jiang
, C. P.
, and Cheung
, Y. K.
, 1995, “A Special Bending Crack Tip Finite Element
,” Int. J. Fract.
, 71
, pp. 55
–69
.17.
Liu
, C. T.
, and Jiang
, C. P.
, 2001, Fracture Mechanics for Plates and Shells
, 2nd ed., National Defence Industry Press
, Beijing, China
.18.
Hung
, N. D.
, and Ngoc
, T. T.
, 2004, “Analysis of Cracked Plates and Shells Using “Metis” Finite Element Model
,” Finite Elem. Anal. Design
, 40
, pp. 855
–878
.19.
Munaswamy
, K.
, and Pullela
, R.
, 2008, “Computation of Stress Intensity Factors for Through Cracks in Plates Using p-Version Finite Element Method
,” Commun. Numer. Meth. Eng.
, 24
, pp. 1753
–1780
.20.
Williams
, M. L.
, 1951, “Surface Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates Under Bending
,” Proceedings of the First US National Congress of Applied Mechanics
, pp. 325
–329
.21.
Williams
, M. L.
, 1952, “Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,” ASME J. Appl. Mech.
, 19
, pp. 526
–528
.22.
Hasebe
, N.
, and Iida
, J.
, 1983, “Intensity of Corner and Stress Concentration Factor
,” J. Eng. Mech.
, 109
(1
), pp. 346
–356
.23.
Hasebe
, N.
, 1986a, “Stress Analysis of a Blunted Notch in a Clamped Edge
,” J. Eng. Mech.
, 112
(1
), pp. 142
–153
.24.
Hasebe
, N.
, Sugimoto
, T.
, and Nakamura
, T.
, 1986b, “Stress Concentration in Clamped Edge of Thin Plate
,” J. Eng. Mech.
, 112
(7
), pp. 642
–653
.25.
Hasebe
, N.
, and Iida
, J.
, 1990, “Notch Mechanics for Plane and Thin Plate Bending Problems
,” Eng. Fract. Mech.
, 37
(1
), pp. 87
–99
.26.
Pengfei
, H.
, Ishikawa
, H.
, and Kohno
, Y.
, 1995, “Analysis of the Orders of Stress Singularity at the Corner Point of a Diamond-Shape Rigid Inclusion or Hole in an Infinite Plate Under Anti-Plane Bending by Conformal Mapping
,” Int. J. Eng. Sci.
, 33
(11
), pp. 1535
–1546
.27.
Maucher
, R.
, and Hartmann
, F.
, 1999, “Corner Singularities of Kirchhoff Plates and the Boundary Element Method
,” Comput. Methods Appl. Mech. Eng.
, 173
, pp. 273
–285
.28.
Treifi
, M.
, Oyadiji
, S. O.
, and Tsang
, D. K. L.
, 2009, “Computations of the Stress Intensity Factors of Double-Edge and Centre V-Notched Plates Under Tension and Anti-Plane Shear by the Fractal-Like Finite Element Method
,” Eng. Fract. Mech.
, 76
(13
), pp. 2091
–2108
.29.
Savruk
, M. P.
, and Kazberuk
, A.
, 2010, “Two-Dimensional Fracture Mechanics Problems for Solids With Sharp and Rounded V-Notches
,” Int. J. Fract.
, 161
, pp. 79
–95
.30.
Zhong
, W. X.
, 1994, “Plane Elasticity in Sectorial Domain and Hamiltonian System
,” Appl. Math. Mech.
, 15
(12
), pp. 1113
–1123
.31.
Yao
, W. A.
, Zhong
, W. X.
, and Su
, B.
, 1999, “New Solution System for Circular Sector Plate Bending and its Application
,” Acta Mech. Solida Sinica
, 12
(4
), pp. 307
–315
.32.
Yao
, W. A.
, Zhong
, W. X.
, and Lim
, C. W.
, 2009, Symplectic Elasticity
, 1st ed., World Scientific
, Singapore
.33.
Lim
, C. W.
, Yao
, W. A.
, and Cui
, S.
, 2008, “Benchmark Symplectic Solutions for Bending of Comer-Supported Rectangular Thin Plates
,” The IES Journal Part A: Civil & Structural Engineering
, 1
(2
), pp. 106
–115
.34.
Lim
, C. W.
, 2010a, “Symplectic Elasticity Approach for Free Vibration of Rectangular Plates
,” Advances in Vibration Engineering
, 9
, pp. 159
–163
.35.
Lim
, C. W.
, Lü
, C. F.
, Xiang
, Y.
, and Yao
, W.
, 2009, “On New Symplectic Elasticity Approach For Exact Free Vibration Solutions of Rectangular Kirchhoff Plates
,” Int. J. Eng. Sci.
, 47
(1
), pp. 131
–140
.36.
Lim
, C. W.
, 2006, “Symplectic Elasticity Exact Analytical Approach for Piezoelectric Composite Thick Beams
,” Second Symposium on Piezoelectricity, Acoustic Waves, and Device Applications
, Hangzhou, PRC, Dec., pp. 14
–17
.37.
Zhang
, H. W.
, and Zhong
, W. X.
, 2003, “Hamiltonian Principle Based Stress Singularity Analysis Near Crack Corners of Multi-Material Junctions
,” Int. J. Solids Struct.
, 40
(2
), pp. 493
–510
.38.
Wang
, C. Q.
, and Yao
, W. A.
, 2003, “Application of the Hamilton System to Dugdale Model in Fracture Mechanics
,” Chinese Journal of Applied Mechanics
, 20
(3
), pp. 151
–154
.39.
Lim
, C. W.
, and Xu
, X. S.
, 2010b, “Symplectic Elasticity: Theory and Applications
,” Appl. Mech. Rev.
, 63
(050802
), pp. 1
–10
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.