This paper considers the bending of a uniformly loaded transversely isotropic piezoelectric circular plate with material properties being arbitrary functions of the thickness coordinate. The displacements and electric potential are expressed in terms of appropriate polynomials of r, the radial coordinate, with coefficients being undetermined functions of z, the axial coordinate. The differential equations satisfied by eight z-dependent functions are derived for the general case. For the uniform load, the eight functions can be obtained through a step-by-step integration with properly incorporating the boundary conditions at the upper and lower surfaces of the plate. The three-dimensional solutions for functionally graded piezoelectric circular plates with simply-supported or clamped boundary are presented. These solutions can be readily degenerated into those for a homogenous circular plate. Three numerical examples are finally given to show the validity of the analysis, the effect of material heterogeneity and the merits of the present analyses. Since no ad hoc hypotheses on the distribution of the elastic and electric fields are introduced, the present three-dimensional solutions could provide a useful way for checking the validity of various approximate theories and numerical methods.

References

1.
Wu
,
C. C. M.
,
Kahn
,
M.
, and
Moy
,
W.
,
1999
, “
Piezoelectric Ceramics With Functionally Gradients, A New Application in Material Design
,”
J. Am. Ceram. Soc.
,
79
, pp.
809
812
.10.1111/j.1151-2916.1996.tb07951.x
2.
Ichinose
,
N.
,
Miyamoto
,
N.
, and
Takahashi
,
S.
,
2004
, “
Ultrasonic Transducers With Functionally Graded Piezoelastic Ceramics
,”
J. Eur. Ceram. Soc.
,
24
, pp.
1681
1685
.10.1016/S0955-2219(03)00599-5
3.
Taya
,
M.
,
Almajid
,
A. A.
,
Dunn
,
M.
, and
Takahashi
,
H.
,
2003
, “
Design of Bimorphpiezo-Composite Actuators With Functionally Graded Microstructure
,”
Sens. Actuators, A
,
107
, pp.
248
260
.10.1016/S0924-4247(03)00381-9
4.
Ueda
,
S.
,
2006
, “
A Finite Crack in a Semi-Infinite Strip of a Graded Piezoelectric Material Under Electric Loading
,”
Euro. J. Mech. A/Solids
,
25
, pp.
250
259
.10.1016/j.euromechsol.2005.09.001
5.
Leetsch
,
R.
,
Wallmersperger
,
T.
, and
Kröplin
,
B.
,
2009
, “
Thermomechanical Modeling of Functionally Fraded Plates
,”
J. Intell. Mater. Syst. Struct.
,
20
, pp.
1799
1813
.10.1177/1045389X08098097
6.
Li
,
X. F.
,
Peng
,
X. L.
, and
Lee
K. Y.
,
2010
, “
Radially Polarized Functionally Graded Piezoelectric Hollow Cylinders as Sensors and Actuators
,”
Euro. J. Mech. A/Solids
,
29
,
704
713
.10.1016/j.euromechsol.2010.02.003
7.
Zhu
,
X. H.
, and
Meng
,
Z. Y.
,
1995
, “
Operational Principle, Fabrication and Displacement Characteristic of a Functionally Gradient Piezoelectric Ceramic Actuator
,”
Sens. Actuators, A
,
48
, pp.
169
176
.10.1016/0924-4247(95)00996-5
8.
Kashtalyan
,
M.
,
2004
, “
Three-Dimensional Elasticity Solution for Bending of Functionally Graded Rectangular Plate
,”
Euro. J. Mech. A/Solids
,
23
, pp.
853
864
.10.1016/j.euromechsol.2004.04.002
9.
Wu
,
C. P.
, and
Tsai
,
Y. H.
,
2004
, “
Asymptotic DQ Solutions of Functionally Graded Annular Spherical Shells
,”
Euro. J. Mech. A/Solids
,
23
, pp.
283
299
.10.1016/j.euromechsol.2003.11.002
10.
Wu
,
Z.
, and
Chen
,
W. J.
,
2006
, “
A Higher Order Theory and Refined Triangular Element for Functionally Graded Plate
,”
Euro. J. Mech. A/Solids
,
25
, pp.
447
463
.10.1016/j.euromechsol.2005.11.008
11.
Brischetto
,
S.
, and
Carrera
,
E.
,
2009
. “
Refined 2D Models for the Analysis of Functionally Graded Piezoelectric Plates
,”
J. Intell. Mater. Syst. Struct.
,
20
, pp.
1783
1797
.10.1177/1045389X08098444
12.
Golub
,
M. V.
,
Fomenko
,
S. I.
,
Bui
,
T. Q.
,
Zhang
,
Ch
, and
Wang
,
Y. S.
,
2012
, “
Transmission and Band Gaps of Elastic SH Waves in Functionally Graded Periodic Laminates
,”
Int. J. Solids Struct.
,
49
, pp.
344
354
.10.1016/j.ijsolstr.2011.10.013
13.
Cheng
,
Z. Q.
, and
Batra
,
R. C.
,
2000
, “
Three-Dimensional Asymptotic Scheme for Piezothermoelastic Laminates
,”
J. Therm. Stresses
,
23
, pp.
95
110
.10.1080/014957300280470
14.
Chen
,
W. Q.
, and
Ding
,
H. J.
,
2000
, “
Bending of Functionally Graded Piezoelectric Rectangular Plates
,”
Acta Mech. Solida Sinica
,
13
, pp.
312
319
.
15.
Cheng
,
Z. Q.
, and
Batra
,
R. C.
,
2000
, “
Three-Dimensional Asymptotic Analysis of Multi-Electroded Piezoelectric Laminates
,”
AIAA J.
,
38
, pp.
317
324
.10.2514/2.959
16.
Cheng
,
Z. Q.
,
Lim
,
C. W.
, and
Kitipornchai
,
S.
,
1999
, “
Three-Dimensional Exact Solution for Inhomogeneous and Laminated Piezoelectric Plates
,”
Int. J. Solids Struct.
,
37
, pp.
1425
1439
.10.1016/S0020-7225(98)00125-6
17.
Cheng
,
Z. Q.
,
Lim
,
C. W.
, and
Kitipornchai
,
S.
,
2000
, “
Three-Dimensional Asymptotic Approach to Inhomogeneous and Laminated Piezoelectric Plates
,”
Int. J. Solids Struct.
,
37
, pp.
3153
3175
.10.1016/S0020-7683(99)00036-0
18.
Reddy
,
J. N.
, and
Cheng
,
Z. Q.
,
2001
, “
Three-Dimensional Solutions of Smart Functionally Graded Plates
,”
J. Appl. Mech.
,
68
,
234
241
.10.1115/1.1347994
19.
Lim
,
C. M.
, and
He
,
L. H.
,
2001
, “
Exact Solutions of a Compositionally Graded Piezoelectric Layer Under Uniform Stretch, Bending and Twisting
,”
Int. J. Mech. Sci.
,
43
, pp.
2479
2492
.10.1016/S0020-7403(01)00059-5
20.
Chen
,
W. Q.
,
Ding
,
H. J.
, and
Xu
,
R. Q.
,
2001
, “
Three-Dimensional Static Analysis of Multi-Layered Piezoelectric Hollow Spheres Via the State Space Method
,”
Int. J. Solids Struct.
,
38
, pp.
4921
4936
.10.1016/S0020-7683(00)00314-0
21.
Chen
,
W. Q.
, and
Ding
,
H. J.
,
2002
, “
On Free Vibration of a Functionally Graded Piezoelectric Rectangular Plate
,”
Acta Mech.
,
153
, pp.
207
216
.10.1007/BF01177452
22.
Zhong
,
Z.
, and
Shang
,
E. T.
,
2003
, “
Three-Dimensional Exact Analysis of a Simply Supported Functionally Gradient Piezoelectric Plate
,”
Int. J. Solids Struct.
,
40
, pp.
5335
5352
.10.1016/S0020-7683(03)00288-9
23.
Chen
,
W. Q.
,
Bian
,
Z. G.
,
Lv
,
C. F.
, and
Ding
,
H. J.
,
2004
, “
3D Free Vibration Analysis of a Functionally Graded Piezoelectric Hollow Cylinder Filled With Compressible Fluid
,”
Int. J. Solids Struct.
,
41
, pp.
947
964
.10.1016/j.ijsolstr.2003.09.036
24.
Lu
,
P.
,
Lee
,
H. P.
, and
Lu
,
C.
,
2005
, “
An Exact Solution for Simply Supported Functionally Graded Piezoelectric Laminates in Cylindrical Bending
,”
Int. J. Mech. Sci.
,
47
, pp.
437
458
.10.1016/j.ijmecsci.2005.01.012
25.
Lu
,
P.
,
Lee
,
H. P.
, and
Lu
,
C.
,
2006
. “
Exact Solutions for Simply Supported Functionally Graded Piezoelectric Laminates by Stroh-Like Formalism
,”
Compos. Struct.
,
72
, pp.
352
363
.10.1016/j.compstruct.2005.01.012
26.
Zhou
,
Y. Y.
,
Chen
,
W. Q.
,
,
C. F.
, and
Wang
,
J.
,
2009
, “
Free Vibration of Cross-Ply Piezoelectric Laminates in Cylindrical Bending With Arbitrary Edges
,”
Compos. Struct.
,
87
, pp.
93
100
.10.1016/j.compstruct.2008.01.002
27.
Zhong
,
Z.
, and
Shang
,
E. T.
,
2005
, “
Exact Analysis of Simply Supported Functionally Graded Piezothermoelectric Plates
,”
J. Intell. Mater. Syst. Struct.
,
16
, pp.
643
651
.10.1177/1045389X05050530
28.
Wang
,
Y.
,
Xu
,
R. Q.
,
Ding
,
H. J.
, and
2010
, “
Analytical Solutions of Functionally Graded Piezoelectric Circular Plates Subjected to Axisymmetric Loads
,”
Acta Mech.
,
215
, pp.
287
305
.10.1007/s00707-010-0332-7
29.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
,
New York
.
30.
Li
,
X. Y.
,
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2006
, “
Pure Bending of Simply Supported Circular Plate of Transversely Isotropic Functionally Graded Material
,”
J. Zhejiang Univ., Sci.
,
7
, pp.
1324
1328
.10.1631/jzus.2006.A1324
31.
Li
,
X. Y.
,
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2008
, “
Elasticity Solutions for a Transversely Isotropic Functionally Graded Circular Plate Subject to an Axisymmetric Transverse Load qrk
,”
Int. J. Solids Struct.
,
45
, pp.
191
210
.10.1016/j.ijsolstr.2007.07.023
32.
Mian
,
A. M.
, and
Spencer
,
A. J. M.
,
1998
, “
Exact Solutions for Functionally Graded and Laminated Elastic Materials
,”
J. Mech. Phys. Solids
,
42
, pp.
2283
2295
.10.1016/S0022-5096(98)00048-9
33.
Yang
,
B.
,
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2009
, “
Elasticity Solutions for a Uniformly Loaded Rectangular Plate of Functionally Graded Materials With Two Opposite Edges Simply Supported
,”
Acta. Mech.
,
207
, pp.
245
258
.10.1007/s00707-008-0122-7
34.
Yang
,
B.
,
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2008
, “
Elasticity Solutions for a Uniformly Loaded Annular Plate of Functionally Graded Materials
,”
Struct. Eng. Mech.
,
30
, pp.
501
512
.
35.
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2001
,
Three Dimensional Problems of Piezoelasticity
,
Nova Science Publishers
,
New York
.
36.
Li
,
X. Y.
,
Wu
,
J.
,
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2011
, “
3D Analytical Solution for a Functionally Graded Transversely Isotropic Piezoelectric Circular Plate Under Tension and Bending
,”
Int. J. Eng. Sci.
,
49
, pp.
664
676
.10.1016/j.ijengsci.2011.03.001
37.
Rao
,
B. N.
, and
Kuna
,
M.
,
2008
, “
Interaction Integrals for Fracture Analysis of Functionally Graded Piezoelectric Materials
,”
Int. J. Solids Struct.
,
45
, pp.
5237
5257
.10.1016/j.ijsolstr.2008.05.020
38.
Huang
,
D. J.
,
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2010
, “
Static Analysis of Anisotropic Functionally Graded Magneto-Electro-Elastic Beams Subjected to Arbitrary Loading
,”
Euro. J. Mech. A/Solids
,
29
, pp.
356
369
.10.1016/j.euromechsol.2009.12.002
39.
Luré
,
A. I.
,
1964
,
Three-Dimensional Problems of the Theory of Elasticity
,
Interscience Publishers
,
New York
.
40.
Fung
,
Y. C.
,
1995
,
Foundation of Solid Mechanics
,
Prentice-Hall
,
Englewood Cliffs
., NJ.
41.
Reddy
,
J. N.
,
Wang
,
C. M.
, and
Kitipornchai
,
S.
,
1999
, “
Axisymmetric Bending of Functionally Graded Circular and Annular Plates
,”
Euro. J. Mech. A. Solids
,
18
, pp.
185
199
.10.1016/S0997-7538(99)80011-4
42.
Ding
,
H. J.
,
Li
,
X. Y.
, and
Chen
,
W.
Q,
2005
, “
Analytical Solutions for a Uniformly Loaded Circular Plate With Clamped Edges
,”
J. Zhejiang Univ. Sci.
,
A(10)
, pp.
1163
1168
.10.1631/jzus.2005.A1163
43.
Ding
,
H. J.
, and
Liang
,
J.
,
1999
, “
The Fundamental Solutions for Semi-Infinite Transversely Isotropic Piezoelectricity and Boundary Element Method
,”
Comput. Struct.
,
77
, pp.
447
455
.10.1016/S0045-7949(98)00237-5
You do not currently have access to this content.