The size effect in the failure of a hybrid adhesive joint of a metal with a fiber-polymer composite, which has been experimentally demonstrated and analytically formulated in preceding two papers, is here investigated numerically. Cohesive finite elements with a mixed-mode fracture criterion are adopted to model the adhesive layer in the metal-composite interface. A linear traction-separation softening law is assumed to describe the damage evolution at debonding in the adhesive layer. The results of simulations agree with the previously measured load-displacement curves of geometrically similar hybrid joints of various sizes, with the size ratio of 1:4:12. The effective size of the fracture process zone is identified from the numerically simulated cohesive stress profile at the peak load. The fracture energy previously identified analytically by fitting the experimentally observed size effect curves agrees well with the fracture energy of the cohesive crack model obtained numerically by optimal fitting of the test data.

References

1.
Yu
,
Q.
,
Bažant
,
Z. P.
,
Bayldon
,
J. M.
,
Le
,
J.-L.
,
Caner
,
F. C.
,
Ng
,
W. H.
,
Waas
,
A. M.
, and
Daniel
,
I. M.
,
2010
, “
Scaling of Strength of Metal-Composite Joints—Part I: Experimental Investigation
,”
ASME J. Appl. Mech.
,
77
,
011011
.10.1115/1.3172254
2.
Le
,
J.-L.
,
Bažant
,
Z. P.
, and
Yu
,
Q.
,
2010
, “
Scaling of Strength of Metal-Composite Joints—Part II: Interface Fracture Analysis
,”
ASME J. Appl. Mech.
,
77
,
011012
.10.1115/1.3172152
3.
Le
,
J.-L.
,
2011
, “
General Size Effect on Strength of Bimaterial Quasi-Brittle Structures
,”
Int. J. Fract.
,
172
, pp.
151
160
.10.1007/s10704-011-9653-3
4.
Bažant
,
Z. P.
,
1984
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
ASCE J. Eng. Mech.
,
110
(
4
), pp.
518
535
.10.1061/(ASCE)0733-9399(1984)110:4(518)
5.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
6.
Bažant
,
Z. P.
,
2004
, “
Scaling Theory of Quasi-Brittle Structural Failure
,”
Proc. Nat. Acad. Sci., USA
,
101
(
37
), pp.
13397
13399
.10.1073/pnas.0405856101
7.
Bažant
,
Z. P.
,
2005
,
Scaling of Structural Strength
, 2nd ed.,
Elsevier
,
London
.
8.
Labossiere
,
P. E. W.
,
Duun
,
M. L.
, and
Cunningham
,
S. J.
,
2002
, “
Application of Bimaterial Interface Corner Failure Mechanics to Silicon/Glass Anodic Bonds
,”
J. Mech. Phys. Solids
,
50
, pp.
405
433
.10.1016/S0022-5096(01)00087-4
9.
Abaqus Inc.
,
2011
, Abaqus 6.11 documentation, Simulia, Providence, RI.
10.
Park
,
K.
,
Paulino
,
G. H.
, and
Roesler
,
J. R.
,
2009
, “
A Unified Potential-Based Cohesive Crack Model for Mixed-Mode Fracture
,”
J. Mech. Phys. Solids
,
57
(
6
), pp.
891
908
.10.1016/j.jmps.2008.10.003
11.
Freed
,
Y.
, and
Banks-Sills
,
L.
,
2008
, “
A New Cohesive Zone Model for Mixed Mode Interface Fracture in Bimaterials
,”
Eng. Fract. Mech.
,
75
, pp.
4583
4593
.10.1016/j.engfracmech.2008.04.013
12.
Camanho
,
P. P.
, and
Davila
,
C. G.
,
2002
, “
Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials
,” NASA Report No. NASA/TM-2002-211737, pp.
1
37
.
13.
Liu
,
D.
, and
Fleck
,
N. A.
,
1999
, “
Scale Effect in the Initiation of Cracking of a Scarf Joint
,”
Int. J. Fract.
,
95
, pp.
66
88
.10.1023/A:1018635914556
14.
Grenestedt
,
J. L.
, and
Hallstrom
,
S.
,
1997
, “
Crack Initiation from Homogeneous and Bimaterial Corners
,”
J. Appl. Mech.
,
64
, pp.
811
818
.10.1115/1.2788986
You do not currently have access to this content.