Recent endeavors to combine the desirable energy-absorption characteristics of stochastic foams with the comparatively high strengths of pyramidal lattices have shown promise for creating composites that outperform their constituents alone under compressive loading. Herein we employ numerical and analytical models to identify both the mechanisms by which synergistic behavior is obtained in such composites and the constituent mass fractions that yield maximum benefits. We find that the loading boundary conditions play a crucial role. When, for instance, composites are loaded between plates that are well bonded to the composites, their specific strengths invariably exceed those predicted by a rule-of-mixtures; however, these strengths can always be improved through an optimized lattice of equivalent mass. In contrast, when the composites are loaded between frictionless plates, their specific strengths exceed not only rule-of-mixtures predictions but, in many cases, also that of any mass-equivalent pyramidal lattice alone subject to the same (frictionless) conditions. The origin of this behavior is found to arise from foam-stabilization of lattice bending and splaying: deformation modes that govern strength in the absence of foam. In essence, the foam causes a transition from bend-dominated to stretch-dominated behavior in the lattice.

References

1.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology: Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.10.1016/S1359-6454(00)00379-7
2.
Ashby
,
M. F.
,
2006
, “
The Properties of Foams and Lattices.
,”
Phil. Trans. A. Math. Phys. Eng.
,
364
(
1838
), pp.
15
30
.10.1098/rsta.2005.1678
3.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. Roy. Soc. A.
,
466
(
2121
), pp.
2495
2516
.10.1098/rspa.2010.0215
4.
Zok
,
F. W.
,
Waltner
,
S. A.
,
Wei
,
Z.
,
Rathbun
,
H. J.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2004
, “
A Protocol for Characterizing the Structural Performance of Metallic Sandwich Panels: Application to Pyramidal Truss Cores
,”
Int. J. Solid. Struct.
,
41
(
22–23
), pp.
6249
6271
.10.1016/j.ijsolstr.2004.05.045
5.
Kooistra
,
G. W.
,
Deshpande
,
V. S.
, and
Wadley
,
H. N. G.
,
2004
, “
Compressive Behavior of Age Hardenable Tetrahedral Lattice Truss Structures Made From Aluminium
,”
Acta Mater.
,
52
(
14
), pp.
4229
4237
.10.1016/j.actamat.2004.05.039
6.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
7.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solid.
,
49
, pp.
1747
1769
.10.1016/S0022-5096(01)00010-2
8.
Jacobsen
,
A. J.
,
Barvosa-Carter
,
W.
, and
Nutt
,
S.
,
2007
, “
Micro-Scale Truss Structures Formed From Self-Propagating Photopolymer Waveguides
,”
Adv. Mater.
,
19
(
22
), pp.
3892
3896
.10.1002/adma.200700797
9.
Jacobsen
,
A. J.
,
Barvosa-Carter
,
W.
, and
Nutt
,
S.
,
2008
, “
Micro-Scale Truss Structures With Three-Fold and Six-Fold Symmetry Formed From Self-Propagating Polymer Waveguides
,”
Acta Mater.
,
56
, pp.
2540
2548
.10.1016/j.actamat.2008.01.051
10.
Evans
,
A. G.
,
He
,
M. Y.
,
Deshpande
,
V. S.
,
Hutchinson
,
J. W.
,
Jacobsen
,
A. J.
, and
Barvosa-Carter
,
W.
,
2010
, “
Concepts for Enhanced Energy Absorption Using Hollow Micro-Lattices
,”
Int. J. Impact Eng.
,
37
(
9
), pp.
947
959
.10.1016/j.ijimpeng.2010.03.007
11.
Jacobsen
,
A. J.
,
Mahoney
,
S.
,
Carter
,
W. B.
, and
Nutt
,
S.
,
2011
, “
Vitreous Carbon Micro-Lattice Structures
,”
Carbon
,
49
(
3
), pp.
1025
1032
.10.1016/j.carbon.2010.10.059
12.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.10.1126/science.1211649
13.
Bernal Ostos
,
J.
,
Rinaldi
,
R. G.
,
Hammetter
,
C. I.
,
Stucky
,
G. D.
,
Zok
,
F. W.
, and
Jacobsen
,
A. J.
,
2012
, “
Deformation Stabilization of Lattice Structures Via Foam Addition
,”
Acta Mater.
,
60
(
19
), pp.
6476
6485
.10.1016/j.actamat.2012.07.053
14.
Cartie
,
D. D.
, and
Fleck
,
N. A.
,
2003
, “
The Effect of Pin Reinforcement Upon the Through-Thickness Compressive Strength of Foam-Cored Sandwich Panels
,”
Compos. Sci. Tech.
,
63
, pp.
2401
2409
.10.1016/S0266-3538(03)00273-2
15.
Chen
,
W.
, and
Wierzbicki
,
T.
,
2001
, “
Relative Merits of Single-Cell, Multi-Cell and Foam-Filled Thin-Walled Structures in Energy Absorption
,”
Thin Wall. Struct.
,
39
, pp.
287
306
.10.1016/S0263-8231(01)00006-4
16.
Kavi
,
H.
,
Toksoy
,
A.
, and
Guden
,
M.
,
2006
, “
Predicting Energy Absorption in a Foam-Filled Thin-Walled Aluminum Tube Based on Experimentally Determined Strengthening Coefficient
,”
Mater. Des.
,
27
(
4
), pp.
263
269
.10.1016/j.matdes.2004.10.024
17.
Hammetter
,
C. I.
,
Rinaldi
,
R. G.
, and
Zok
,
F. W.
,
2012
, “
Pyramidal Lattice Structures for High Strength and Energy Absorption
,”
ASME J. Appl. Mech
80
(
4
), p.
041015
.10.1115/1.4007865
18.
Abaqus FEA
,
2009
, “
Abaqus Analysis User's Manual
,” Dassault Systemes, Vélizy-Villacoublay, France.
19.
Jacobsen
,
A. J.
,
Barvosa-Carter
,
W.
, and
Nutt
,
S.
,
2007
, “
Compression Behavior of Micro-Scale Truss Structures Formed From Self-Propagating Polymer Waveguides
,”
Acta Mater.
,
55
(
20
), pp.
6724
6733
.10.1016/j.actamat.2007.08.036
20.
Rinaldi
,
R. G.
,
Bernal-Ostos
,
J.
,
Hammetter
,
C. I.
,
Jacobsen
,
A. J.
, and
Zok
,
F. W.
,
2012
, “
Effects of Material Heterogeneities on the Compressive Response of Thiol-ene Pyramidal Lattices
,”
J. Mater. Sci.
,
47
(
18
), pp.
6621
6632
.10.1007/s10853-012-6598-5
21.
Deshpande
,
V.
,
2001
, “
Multi-Axial Yield Behaviour of Polymer Foams
,”
Acta Mater.
,
21
(
5
), pp.
141
1866
.10.1016/S1359-6454(01)00058-1
22.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
, 2nd ed.
McGraw-Hill
,
New York
.
You do not currently have access to this content.