This paper gives a simple approach to designing a controller that minimizes a user-specified control cost for a mechanical system while ensuring that the control is stable. For a user-given Lyapunov function, the method ensures that its time rate of change is negative and equals a user specified negative definite function. Thus a closed-form, optimal, nonlinear controller is obtained that minimizes a desired control cost at each instant of time and is guaranteed to be Lyapunov stable. The complete nonlinear dynamical system is handled with no approximations/linearizations, and no a priori structure is imposed on the nature of the controller. The methodology is developed here for systems modeled by second-order, nonautonomous, nonlinear, differential equations. The approach relies on some recent fundamental results in analytical dynamics and uses ideas from the theory of constrained motion.

References

1.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1992
, “
A New Perspective on Constrained Motion
,”
Proc. R. Soc. London, Ser. A
,
439
, pp.
407
410
.10.1098/rspa.1992.0158
3.
Udwadia
,
F. E.
,
2003
, “
A New Perspective on the Tracking Control of Nonlinear Structural and Mechanical Systems
,”
Proc. R. Soc. London, Ser. A
,
459
, pp.
1783
1800
.10.1098/rspa.2002.1062
4.
Udwadia
,
F.
,
2008
, “
Optimal Tracking Control of Nonlinear Dynamical Systems
,”
Proc. R. Soc. London, Ser. A
,
464
, pp.
2341
2363
.10.1098/rspa.2008.0040
5.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1996
, Analytical Dynamics: A New Approach,
Cambridge University Press
,
Cambridge, UK
.
6.
Sontag
,
E. D.
,
1989
, “
A Universal Construction of Artstein's Theorem on Nonlinear Stabilization
,”
Syst. Control Lett.
,
13
, pp.
117
123
.10.1016/0167-6911(89)90028-5
7.
Freeman
,
R. A.
, and
Koktovic
,
P. V.
,
1996
, “
Inverse Optimality in Robust Stabilization
,”
SIAM J. Control Optim.
,
34
, pp.
1365
1391
.10.1137/S0363012993258732
8.
Freeman
,
R. A.
, and
Primbs
,
J. A.
,
1996
, “
Control Lyapunov Functions: New Ideas From an Old Source
,”
Proceedings of the 35th IEEE Conference on Decision and Control
, Kobe, Japan, December 11–13, pp.
3926
3931
.10.1109/CDC.1996.577294
9.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
10.
Cimen
,
T.
,
2008
, “State-Dependent Riccati Equation (SDRE) Control: A Survey,”
Proceedings of the 17th World Congress of the International Federation of Automatic Control
(
IFAC
),
Seoul, Korea
, July 6–11. 10.3182/20080706-5-KR-1001.3557
You do not currently have access to this content.