A method is proposed to account for asperity interaction and bulk substrate deformation in models that utilize statistical summation of asperity forces to characterize contact between rough surfaces. Interaction deformations of noncontacting asperities are calculated based on the probability that they have taller neighbors in their vicinity, whose deformation upon contact, in turn, induces local substrate deformations. The effect of the order of interaction on the total contact force is explored and a limit is proposed based on asperity density. The updated contact force accounting for asperity interaction is found to tend to a constant fraction of the nominal contact force at the mathematical limit of asperity contact independent of the order of interaction, roughness, or material properties. For contact in the vicinity of zero mean plane separation, rough surfaces are found to exhibit greater asperity interaction resulting in reduced contact forces. A simplified curve-fitted expression is introduced that can be used to account for asperity interaction by adjusting the nominal contact force predicted by other models.

References

1.
Greenwood
,
J.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
P. Roy. Soc. Lond. A Mat.
,
295
(
1442
), pp.
300
319
.10.1098/rspa.1966.0242
2.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
,
1975
, “
The Elastic Contact of a Rough Surface
,”
Wear
,
35
(
1
), pp.
87
111
.10.1016/0043-1648(75)90145-3
3.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
.10.1016/0043-1648(86)90045-1
4.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.10.1115/1.3261348
5.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.10.1115/1.1490373
6.
Ciavarella
,
M.
,
Delfine
,
V.
, and
Demelio
,
G.
,
2006
, “
A ‘Re-Vitalized’ Greenwood and Williamson Model of Elastic Contact Between Fractal Surfaces
,”
J. Mech. Phys. Solids
,
54
(
12
), pp.
2569
2591
.10.1016/j.jmps.2006.05.006
7.
Suh
,
A. Y.
,
Lee
,
S.-C.
, and
Polycarpou
,
A. A.
,
2006
, “
Design Optimization of Ultra-Low Flying Head-Disk Interfaces Using an Improved Elastic-Plastic Rough Surface Model
,”
ASME J. Tribol.
,
128
(
4
), pp.
801
810
.10.1115/1.2345399
8.
Ciavarella
,
M.
,
Greenwood
,
J. A.
, and
Paggi
,
M.
,
2008
, “
Inclusion of ‘Interaction’ in the Greenwood and Williamson Contact Theory
,”
Wear
,
265
(
5–-6
), pp.
729
734
.10.1016/j.wear.2008.01.019
9.
Medina
,
S.
,
Nowell
,
D.
, and
Dini
,
D.
,
2013
, “
Analytical and Numerical Models for Tangential Stiffness of Rough Elastic Contacts
,”
Tribol. Lett.
,
49
(
1
), pp.
103
115
.10.1007/s11249-012-0049-y
10.
Vakis
,
A. I.
, and
Polycarpou
,
A. A.
,
2013
, “
An Advanced Rough Surface Continuum-Based Contact and Sliding Model in the Presence of Molecularly Thin Lubricant
,”
Tribol. Lett.
,
49
(
1
), pp.
227
238
.10.1007/s11249-012-0060-3
11.
Jeng
,
Y.-R.
, and
Peng
,
S.-R.
,
2006
, “
Elastic-Plastic Contact Behavior Considering Asperity Interactions for Surfaces With Various Height Distributions
,”
ASME J. Tribol.
,
128
(
2
), pp.
245
251
.10.1115/1.2162557
12.
Yeo
,
C.-D.
,
Katta
,
R. R.
, and
Polycarpou
,
A. A.
,
2009
, “
Improved Elastic Contact Model Accounting for Asperity and Bulk Substrate Deformation
,”
Tribol. Lett.
,
35
(
3
), pp.
191
203
.10.1007/s11249-009-9448-0
13.
Chandrasekar
,
S.
,
Eriten
,
M.
, and
Polycarpou
,
A. A.
,
2013
, “
An Improved Model of Asperity Interaction in Normal Contact of Rough Surfaces
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011025
.10.1115/1.4007142
14.
Komvopoulos
,
K.
, and
Ye
,
N.
,
2001
, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
,
123
(
3
), pp.
632
640
.10.1115/1.1327583
15.
Eid
,
H.
, and
Adams
,
G. G.
,
2007
, “
An Elastic–Plastic Finite Element Analysis of Interacting Asperities in Contact With a Rigid Flat
,”
J. Phys. D Appl. Phys.
,
40
(
23
), p.
7432
7439
.10.1088/0022-3727/40/23/026
16.
Paggi
,
M.
, and
Ciavarella
,
M.
,
2010
, “
The Coefficient of Proportionality K Between Real Contact Area and Load, With New Asperity Models
,”
Wear
,
268
(
7–8
), pp.
1020
1029
.10.1016/j.wear.2009.12.038
17.
Greenwood
,
J. A.
,
2006
, “
A Simplified Elliptic Model of Rough Surface Contact
,”
Wear
,
261
(
2
), pp.
191
200
.10.1016/j.wear.2005.09.031
18.
Persson
,
B. N. J.
,
2007
, “
Relation Between Interfacial Separation and Load: A General Theory of Contact Mechanics
,”
Phys. Rev. Lett.
,
99
(
12
), p.
125502
.10.1103/PhysRevLett.99.125502
19.
Carbone
,
G.
, and
Bottiglione
,
F.
,
2008
, “
Asperity Contact Theories: Do They Predict Linearity Between Contact Area and Load?
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2555
2572
.10.1016/j.jmps.2008.03.011
20.
Yu
,
N.
, and
Polycarpou
,
A. A.
,
2002
, “
Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
,
124
(
2
), pp.
367
376
.10.1115/1.1403458
21.
Sahoo
,
P.
, and
Ali
,
S. M.
,
2008
, “
Elastic-Plastic Adhesive Contact of Non-Gaussian Rough Surfaces
,”
Sadhana
,
33
(
4
), pp.
367
384
.10.1007/s12046-008-0025-2
22.
Pullen
,
J.
, and
Williamson
,
J. B. P.
,
1972
, “
On the Plastic Contact of Rough Surfaces
,”
P. Roy. Soc. Lond. A Mat.
,
327
(
1569
), pp.
159
173
.10.1098/rspa.1972.0038
23.
Archard
,
J. F.
,
1974
, “
Surface Topography and Tribology
,”
Tribol.
,
7
(
5
), pp.
213
220
.10.1016/0041-2678(74)90119-5
24.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.10.1080/10402000308982641
25.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
J. Lubr. Technol.
,
93
(
3
), pp.
398
407
.10.1115/1.3451608
26.
Suh
,
A. Y.
, and
Polycarpou
,
A. A.
,
2006
, “
Digital Filtering Methodology Used to Reduce Scale of Measurement Effects in Roughness Parameters for Magnetic Storage Supersmooth Hard Disks
,”
Wear
,
260
(
4–5
), pp.
538
548
.10.1016/j.wear.2005.03.012
27.
Bhattacharyya
,
P.
, and
Chakrabarti
,
B. K.
,
2008
, “
The Mean Distance to the nth Neighbour in a Uniform Distribution of Random Points: An Application of Probability Theory
,”
Eur. J. Phys.
,
29
(
3
), p.
639
.10.1088/0143-0807/29/3/023
28.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
29.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
,
125
(
3
), pp.
499
506
.10.1115/1.1538190
You do not currently have access to this content.