In this research we study the dynamics of a coupled linear oscillator-bistable energy harvester system. The method of harmonic balance and perturbation analysis are used to predict the existence and stability of the bistable device interwell vibration. The influences of important parameters on tailoring the coupled system response are investigated to determine strategies for improved energy harvesting performance. We demonstrate analytically that for excitation frequencies in a bandwidth less than the natural frequency of the uncoupled linear oscillator having net mass that is the combination of the bistable and linear bodies, the bistable harvester dynamics may be substantially intensified as compared to a single (individual) bistable harvester. In addition, the linear-bistable coupled system may introduce a stable out-of-phase dynamic around the natural frequency of the uncoupled linear oscillator, enhancing the performance of the harvester by providing a second interwell response not possible when using a single bistable harvester. Key analytical findings are confirmed through numerical simulations and experiments, validating the predicted trends and demonstrating the advantages of the coupled system for energy harvesting.

References

1.
Cook-Chennault
,
K. A.
,
Thambi
,
N.
, and
Sastry
,
A. M.
,
2008
, “
Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems With Special Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
17
(
4
), p.
043001
.10.1088/0964-1726/17/4/043001
2.
El-Hami
,
M.
,
Glynne-Jones
,
P.
,
White
,
N. M.
,
Hill
,
M.
,
Beeby
,
S.
,
James
,
E.
,
Brown
,
A. D.
, and
Ross
,
J. N.
,
2001
, “
Design and Fabrication of a New Vibration-Based Electromechanical Power Generator
,”
Sensors Actuators A Phys.
,
92
(
1–3
), pp.
335
342
.10.1016/S0924-4247(01)00569-6
3.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(
11
), pp.
1131
1144
.10.1016/S0140-3664(02)00248-7
4.
Mitcheson
,
P. D.
,
Green
,
T. C.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2004
, “
Architectures for Vibration-Driven Micropower Generators
,”
J. Microelectromech. Syst.
,
13
(
3
), pp.
429
440
.10.1109/JMEMS.2004.830151
5.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.10.1177/1045389X10390249
6.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2010
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.10.1088/0957-0233/21/2/022001
7.
Zuo
,
L.
,
2009
, “
Effective and Robust Vibration Control Using Series Multiple Tuned-Mass Dampers
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031003
.10.1115/1.3085879
8.
Moheimani
,
S. O. R.
,
2003
, “
A Survey of Recent Innovations in Vibration Damping and Control Using Shunted Piezoelectric Transducers
,”
IEEE Trans. Control Syst. Technol.
,
11
(
4
), pp.
482
494
.10.1109/TCST.2003.813371
9.
Tang
,
L.
, and
Yang
,
Y.
,
2012
, “
A Multiple-Degree-of-Freedom Piezoelectric Energy Harvesting Model
,”
J. Intell. Mater. Syst. Struct.
,
23
(
14
), pp.
1631
1647
.10.1177/1045389X12449920
10.
Abdelkefi
,
A.
,
Nayfeh
,
A. H.
,
Hajj
,
M. R.
, and
Najar
,
F.
,
2012
, “
Energy Harvesting From a Multifrequency Response of a Tuned Bending–Torsion System
,”
Smart Mater. Struct.
,
21
(
7
), p.
075029
.10.1088/0964-1726/21/7/075029
11.
Aldraihem
,
O.
, and
Baz
,
A.
,
2011
, “
Energy Harvester With a Dynamic Magnifier
,”
J. Intell. Mater. Syst. Struct.
,
22
(
6
), pp.
521
530
.10.1177/1045389X11402706
12.
Aladwani
,
A.
,
Arafa
,
M.
,
Aldraihem
,
O.
, and
Baz
A.
,
2012
, “
Cantilevered Piezoelectric Energy Harvester With a Dynamic Magnifier
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031004
.10.1115/1.4005824
13.
Zhou
,
W.
,
Penamalli
,
G. R.
, and
Zuo
,
L.
,
2012
, “
An Efficient Vibration Energy Harvester With a Multi-Mode Dynamic Magnifier
,”
Smart Mater. Struct.
,
21
(
1
), p.
015014
.10.1088/0964-1726/21/1/015014
14.
Tang
,
X.
, and
Zuo
,
L.
,
2011
, “
Enhanced Vibration Energy Harvesting Using Dual-Mass Systems
,”
J. Sound Vib.
,
330
(
21
), pp.
5199
5209
.10.1016/j.jsv.2011.05.019
15.
Wu
,
H.
,
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2013
, “
A Novel Two-Degrees-of-Freedom Piezoelectric Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
24
(
3
), pp.
357
368
.10.1177/1045389X12457254
16.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Relative Performance of a Vibratory Energy Harvester in Mono- and Bi-Stable Potentials
,”
J. Sound Vib.
,
330
(
24
), pp.
6036
6052
.10.1016/j.jsv.2011.07.031
17.
Ramlan
,
R.
,
Brennan
,
M. J.
,
Mace
,
B. R.
, and
Kovacic
,
I.
,
2009
, “
Potential Benefits of a Non-Linear Stiffness in an Energy Harvesting Device
,”
Nonlinear Dyn.
,
59
(
4
), pp.
545
558
.10.1007/s11071-009-9561-5
18.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.10.1063/1.3159815
19.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Phys. D
,
239
(
10
), pp.
640
653
.10.1016/j.physd.2010.01.019
20.
Arrieta
,
A. F.
,
Hagedorn
,
P.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104102
.10.1063/1.3487780
21.
Gammaitoni
,
L.
,
Neri
,
I.
, and
Vocca
,
H.
,
2009
, “
Nonlinear Oscillators for Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
16
), p.
164102
.10.1063/1.3120279
22.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C.-K.
,
2012
, “
Improving Functionality of Vibration Energy Harvesters Using Magnets
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1433
1449
.10.1177/1045389X12443016
23.
Mann
,
B. P.
,
Barton
,
D. A.
, and
Owens
,
B. A.
,
2012
, “
Uncertainty in Performance for Linear and Nonlinear Energy Harvesting Strategies
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1451
1460
.10.1177/1045389X12439639
24.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
25.
Tang
,
L.
,
Yang
,
Y.
, and
Wu
,
H.
,
2012
, “
Modeling and Experiment of a Multiple-DOF Piezoelectric Energy Harvester
,”
SPIE Proceedings
,
Vol. 8341, Active and Passive Smart Structures and Integrated Systems 2012
, Paper No. 83411E10.1117/12.914764.
26.
Harne
,
R. L.
,
Thota
,
M.
, and
Wang
,
K. W.
,
2013
, “
Bistable Energy Harvesting Enhancement With an Auxiliary Linear Oscillator
,”
Smart Mater. Struct.
,
22
(
12
), p.
125028
.10.1088/0964-1726/22/12/125028
27.
Virgin
,
L. N.
,
2000
,
Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration
,
Cambridge University Press
,
New York
.
28.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
John Wiley
,
New York
.
29.
Harne
,
R. L.
,
Thota
,
M.
, and
Wang
,
K. W.
,
2013
, “
Concise and High-Fidelity Predictive Criteria for Maximizing Performance and Robustness of Bistable Energy Harvesters
,”
Appl. Phys. Lett.
,
102
(
5
), p.
053903
.10.1063/1.4790381
30.
Kim
,
S.-Y.
, and
Kim
,
Y.
,
2000
, “
Dynamic Stabilization in the Double-Well Duffing Oscillator
,”
Phys. Rev. E
,
61
(
6
), pp.
6517
6520
.10.1103/PhysRevE.61.6517
31.
Kim
,
Y.
,
Lee
,
S. Y.
, and
Kim
,
S.-Y.
,
2000
, “
Experimental Observation of Dynamic Stabilization in a Double-Well Duffing Oscillator
,”
Phys. Lett. A
,
275
(
4
), pp.
254
259
.10.1016/S0375-9601(00)00572-7
32.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
, “
Excitation-Induced Stability in a Bistable Duffing Oscillator: Analysis and Experiments
,”
ASME J. Comput. Nonlinear Dyn.
(submitted).
33.
Cassidy
,
I. L.
,
Scruggs
,
J. T.
,
Behrens
,
S.
, and
Gavin
,
H. P.
,
2011
, “
Design and Experimental Characterization of an Electromagnetic Transducer for Large-Scale Vibratory Energy Harvesting Applications
,”
J. Intell. Mater. Syst. Struct.
,
22
(
17
), pp.
2009
2024
.10.1177/1045389X11421824
34.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover
,
New York
.
35.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.10.1016/j.jsv.2010.12.005
You do not currently have access to this content.