This work investigates the phonon properties such as phonon dispersion relation, average group velocity, and phonon density of state (DOS) theoretically in GaN nanofilm under various surface stress fields. By taking into account of the surface energy effects, the elasticity theory is presented to describe the confined phonons of nanofilms with different surface stresses. The calculation results show that the influence of surface stress on the phonon properties depends on the thickness of nanofilm. The negative surface stress leads to a higher average group velocity and corresponding lower phonon DOS. The positive surface stress has the opposite effect. The significant modification of thermal properties, e.g., phonon thermal conductivity, in GaN nanofilms is mostly stemmed from the change of phonon average group velocity and DOS by surface stress. These results suggest that the thermal or electrical properties in GaN nanofilms could be enhanced or reduced by tuning the surface stress acting on the films.

References

1.
Balandin
,
A. A.
,
Pokatilov
,
E. P.
, and
Nika
,
D.
,
2007
, “
Phonon Engineering in Hetero- and Nanostructures
,”
J. Nanoelectron. Optoelectron.
,
2
(
2
), pp.
140
170
.
2.
Tian
,
Z.
,
Lee
,
S.
, and
Chen
,
G.
,
2013
, “
Heat Transfer in Thermoelectric Materials and Devices
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061605
.
3.
Beek
,
J. T. M.
, and
Puers
,
R.
,
2011
, “
A Review of MEMS Oscillators for Frequency Reference and Timing Applications
,”
J. Micromech. Microeng.
,
22
(
1
), pp.
1
35
.
4.
Huang
,
Y.
,
Duan
,
X.
,
Cui
,
Y.
, and
Lieber
,
C. M.
,
2002
, “
Gallium Nitride Nanowire Nanodevices
,”
Nano Lett.
,
2
(
2
), pp.
101
104
.
5.
Goldberger
,
J.
,
He
,
R.
,
Zhang
,
Y.
,
Lee
,
S.
,
Yan
,
H.
,
Choi
,
H. J.
, and
Yang
,
P.
,
2003
, “
Single-Crystal Gallium Nitride Nanotubes
,”
Nature
,
422
(
6932
), pp.
599
602
.
6.
Gradečak
,
S.
,
Qian
,
F.
,
Li
,
Y.
,
Park
,
H.-G.
, and
Lieber
,
C. M.
,
2005
, “
GaN Nanowire Lasers With Low Lasing Thresholds
,”
Appl. Phys. Lett.
,
87
(
17
), p.
173111
.
7.
Mohammad
,
S. N.
,
Salvador
,
A. A.
, and
Morkoc
,
H.
,
1995
, “
Emerging Gallium Nitride Based Devices
,”
Proc. IEEE
,
83
(
10
), pp.
1306
1355
.
8.
Chung
,
K.
,
Lee
,
C.-H.
, and
Yi
,
G.-C.
,
2010
, “
Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices
,”
Science
,
330
(
6004
), pp.
655
657
.
9.
Eichenfield
,
M.
,
Chan
,
J.
,
Camacho
,
R. M.
,
Vahala
,
K. J.
, and
Painter
,
O.
,
2009
, “
Optomechanical Crystals
,”
Nature
,
462
(
7269
), pp.
78
82
.
10.
Baliga
,
B. J.
,
2013
, “
Gallium Nitride Devices for Power Electronic Applications
,”
Semicond. Sci. Technol.
,
28
(
7
), p.
074011
.
11.
Xing
,
H.
,
2010
, “
Performance Evaluation of Silicon and Gallium Nitride Power FETs for DC/DC Power Converter Applications
,”
IEEE National Aerospace and Electronics Conference
(
NAECON
), Fairborn, OH, July 14–16, pp.
317
321
.
12.
BabiÄ
,
D. I.
,
2013
, “
Thermal Analysis of AlGaN/GaN HEMTs Using Angular Fourier-Series Expansion
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111001
.
13.
Kuykendall
,
T.
,
Pauzauskie
,
P. J.
,
Zhang
,
Y.
,
Goldberger
,
J.
,
Sirbuly
,
D.
,
Denlinger
,
J.
, and
Yang
,
P.
,
2004
, “
Crystallographic Alignment of High-Density Gallium Nitride Nanowire Arrays
,”
Nat. Mater.
,
3
(
8
), pp.
524
528
.
14.
Liu
,
B.
,
Bando
,
Y.
,
Tang
,
C.
,
Xu
,
F.
, and
Golberg
,
D.
,
2005
, “
Quasi-Aligned Single-Crystalline GaN Nanowire Arrays
,”
Appl. Phys. Lett.
,
87
(
7
), p.
073106
.
15.
Zou
,
J.
, and
Balandin
,
A.
,
2001
, “
Phonon Heat Conduction in a Semiconductor Nanowire
,”
J. Appl. Phys.
,
89
(
5
), pp.
2932
2938
.
16.
Pokatilov
,
E. P.
,
Nika
,
D. L.
, and
Balandin
,
A. A.
,
2005
, “
Acoustic-Phonon Propagation in Rectangular Semiconductor Nanowires With Elastically Dissimilar Barriers
,”
Phys. Rev. B
,
72
(
11
), p.
113311
.
17.
Balandin
,
A. A.
,
2005
, “
Nanophononics: Phonon Engineering in Nanostructures and Nanodevices
,”
J. Nanosci. Nanotechnol.
,
5
(
7
), pp.
1015
1022
.
18.
Cuffe
,
J.
,
Chávez
,
E.
,
Shchepetov
,
A.
,
Chapuis
,
P.-O.
,
El Boudouti
,
E. H.
,
Alzina
,
F.
,
Kehoe
,
T.
,
Gomis-Bresco
,
J.
,
Dudek
,
D.
,
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Prunnila
,
M.
,
Ahopelto
,
J.
, and
Sotomayor Torres
,
C. M.
,
2012
, “
Phonons in Slow Motion: Dispersion Relations in Ultrathin Si Membranes
,”
Nano Lett.
,
12
(
7
), pp.
3569
3573
.
19.
Cuffe
,
J.
,
Ristow
,
O.
,
Chávez
,
E.
,
Shchepetov
,
A.
,
Chapuis
,
P.-O.
,
Alzina
,
F.
,
Hettich
,
M.
,
Prunnila
,
M.
,
Ahopelto
,
J.
,
Dekorsy
,
T.
, and
Sotomayor Torres
,
C. M.
,
2013
, “
Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes
,”
Phys. Rev. Lett.
,
110
(
9
), p.
095503
.
20.
Maldovan
,
M.
,
2013
, “
Sound and Heat Revolutions in Phononics
,”
Nature
,
503
(
7475
), pp.
209
217
.
21.
Guo
,
Y. F.
, and
Fang
,
D. N.
,
2014
, “
Formation of Bending-Wave Band Structures in Bicoupled Beam-Type Phononic Crystals
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011009
.
22.
Bian
,
Z. G.
,
Peng
,
W.
, and
Song
,
J. Z.
,
2014
, “
Thermal Tuning of Band Structures in a One-Dimensional Phononic Crystal
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041008
.
23.
Liu
,
C. C.
,
Hu
,
S. L.
, and
Shen
,
S. P.
,
2014
, “
Effect of Flexoelectricity on Band Structures of One-Dimensional Phononic Crystals
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051007
.
24.
Osetrov
,
A. V.
,
Fröhlich
,
H.-J.
,
Koch
,
R.
, and
Chilla
,
E.
,
2000
, “
Acoustoelastic Effect in Anisotropic Layered Structures
,”
Phys. Rev. B
,
62
(
21
), pp.
13963
13969
.
25.
Zhu
,
L. L.
, and
Zheng
,
X. J.
,
2009
, “
Modification of the Phonon Thermal Conductivity in Spatially Confined Semiconductor Nanofilms Under Stress Fields
,”
EPL
,
88
(
3
), p.
36003
.
26.
Li
,
X.
,
Maute
,
K.
,
Dunn
,
M. L.
, and
Yang
,
R.
,
2010
, “
Strain Effects on the Thermal Conductivity of Nanostructures
,”
Phys. Rev. B
,
81
(
24
), p.
245318
.
27.
Shchepetov
,
A.
,
Prunnila
,
M.
,
Alzina
,
F.
,
Schneider
,
L.
,
Cuffe
,
J.
,
Jiang
,
H.
,
Kauppinen
,
E. I.
,
Sotomayor Torres
,
C. M.
, and
Ahopelto
,
J.
,
2013
, “
Ultra-Thin Free-Standing Single Crystalline Silicon Membranes With Strain Control
,”
Appl. Phys. Lett.
,
102
(
19
), p.
192108
.
28.
Graczykowski
,
B.
,
Gomis-Bresco
,
J.
,
Alzina
,
F.
,
Reparaz
,
J. S.
,
Shchepetov
,
A.
,
Prunnila
,
M.
,
Ahopelto
,
J.
, and
Sotomayor Torres
,
C. M.
,
2014
, “
Acoustic Phonon Propagation in Ultra-Thin Si Membranes Under Biaxial Stress Field
,”
New J. Phys.
,
16
(
7
), p.
073024
.
29.
Dingreville
,
R.
,
Qu
,
J. M.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1827
1854
.
30.
Bernal
,
R. A.
,
Agrawal
,
R.
,
Peng
,
B.
,
Bertness
,
K. A.
,
Sanford
,
N. A.
,
Davydov
,
A. V.
, and
Espinosa
,
H. D.
,
2010
, “
Effect of Growth Orientation and Diameter on the Elasticity of GaN Nanowires. A Combined In Situ TEM and Atomistic Modeling Investigation
,”
Nano Lett.
,
11
(
2
), pp.
548
555
.
31.
Juvé
,
V.
,
Crut
,
A.
,
Maioli
,
P.
,
Pellarin
,
M.
,
Broyer
,
M.
,
Del Fatti
,
N.
, and
Vallée
,
F.
,
2010
, “
Probing Elasticity at the Nanoscale: Terahertz Acoustic Vibration of Small Metal Nanoparticles
,”
Nano Lett.
,
10
(
5
), pp.
1853
1858
.
32.
Dingreville
,
R.
, and
Qu
,
J. M.
,
2007
, “
A Semi-Analytical Method to Compute Surface Elastic Properties
,”
Acta Mater.
,
55
(
1
), pp.
141
147
.
33.
Wei
,
Y.
, and
Chen
,
B.
,
2015
, “
Investigation of the Surface Elasticity of GaN by Atomistic Simulation and Its Application to the Elastic Relaxation of GaN Nanoisland
,”
Mater. Lett.
,
141
, pp.
245
247
.
34.
Zou
,
J.
,
Lange
,
X.
, and
Richardson
,
C.
,
2006
, “
Lattice Thermal Conductivity of Nanoscale AlN/GaN/AlN Heterostructures: Effects of Partial Phonon Spatial Confinement
,”
J. Appl. Phys.
,
100
(
10
), p.
104309
.
35.
Sichel
,
E. K.
, and
Pankove
,
J. I.
,
1977
, “
Thermal Conductivity of GaN, 25–360 K
,”
J. Phys. Chem. Solids
,
38
(
3
), p.
330
.
36.
Łepkowski
,
S. P.
,
Majewski
,
J. A.
, and
Jurczak
,
G.
,
2005
, “
Nonlinear Elasticity in III-N Compounds: AB Initio Calculations
,”
Phys. Rev. B
,
72
(
24
), p.
245201
.
37.
Łepkowski
,
S. P.
, and
Gorczyca
,
I.
,
2011
, “
AB Initio Study of Elastic Constants in InxGa1-xN and InxAl1-xN Wurtzite Alloys
,”
Phys. Rev. B
,
83
(
23
), p.
203201
.
38.
Zhu
,
L. L.
, and
Ruan
,
H. H.
,
2014
, “
Influence of Prestress Fields on the Phonon Thermal Conductivity of GaN Nanostructures
,”
ASME J. Heat Transfer
,
136
(
10
), p.
102402
.
You do not currently have access to this content.