Bistable mechanisms have two stable equilibrium positions separated by a higher energy unstable equilibrium position. They are well suited for microswitches, microrelays, and many other macro- and micro-applications. This paper discusses a bistable buckled beam actuated by a moment input. A theoretical model is developed for predicting the necessary input moment. A novel experimental test setup was created for experimental verification of the model. The results show that the theoretical model is able to predict the maximum necessary input moment within 2.53%. This theoretical model provides a guideline to design bistable compliant mechanisms and actuators. It is also a computational tool to size the dimensions of buckled beams for actuating a specific mechanism.

References

1.
Michael
,
A.
, and
Kwok
,
C. Y.
,
2006
, “
Design Criteria for Bi-Stable Behavior in a Buckled Multi-Layered MEMS Bridge
,”
J. Micromech. Microeng.
,
16
(
10
), pp.
2034
2043
.10.1088/0960-1317/16/10/016
2.
Plaut
,
R. H.
,
2008
, “
Snap-Through of Shallow Elastic Arches Under End Moments
,”
ASME J. Appl. Mech.
,
76
(
1
), p.
014504
.10.1115/1.3000020
3.
Plaut
,
R. H.
, and
Virgin
,
L. N.
,
2009
, “
Vibration and Snap-Through of Bent Elastica Strips Subjected to End Rotations
,”
ASME J. Appl. Mech.
,
76
(
4
), p.
041011
.10.1115/1.3086783
4.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2002
, “
A Three Degree of Freedom Pseudo-Rigid-Body Model for the Design of a Fully Compliant Bistable Micromechanism
,”
ASME
Paper No. DETC2002/MECH-34202.10.1115/DETC2002/MECH-34202
5.
Luharuka
,
R.
, and
Hesketh
,
P. J.
,
2007
, “
Design of Fully Compliant, In-Plane Rotary, Bistable Micromechanisms for MEMS Applications
,”
Sens. Actuators A
,
134
(
1
), pp.
231
238
.10.1016/j.sna.2006.04.030
6.
Andò
,
B.
,
Baglio
,
S.
,
Bulsara
,
A. R.
, and
Marletta
,
V.
,
2014
, “
A Bistable Buckled Beam Based Approach for Vibrational Energy Harvesting
,”
Sens. Actuators A
,
211
(May), pp.
153
161
.10.1016/j.sna.2013.12.027
7.
Santer
,
M.
,
2010
, “
Actuated Bistable Jumping Structures
,”
ASME J. Appl. Mech.
,
77
(
3
), p.
031009
.10.1115/1.4000417
8.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.10.1109/JMEMS.2004.825308
9.
Park
,
S.
, and
Hah
,
D.
,
2008
, “
Pre-Shaped Buckled-Beam Actuators: Theory and Experiments
,”
Sens. Actuators A
,
148
(
1
), pp.
186
192
.10.1016/j.sna.2008.07.009
10.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101001
.10.1115/1.3179003
11.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators A
,
69
(
3
), pp.
212
216
.10.1016/S0924-4247(98)00097-1
12.
Chen
,
J.-S.
, and
Hung
,
S.-Y.
,
2011
, “
Snapping of an Elastica Under Various Loading Mechanisms
,”
Eur. J. Mech. A
,
30
(
4
), pp.
525
531
.10.1016/j.euromechsol.2011.03.006
13.
Beharic
,
J.
,
Lucas
,
T. M.
, and
Harnett
,
C. K.
,
2014
, “
Analysis of a Compressed Bistable Buckled Beam on a Flexible Support
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081011
.10.1115/1.4027463
14.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2008
, “
Actuation of Bistable Buckled Beams With Macro-Fiber Composites
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
564
569
.10.1109/IROS.2008.4650765
15.
Lagoudas
,
D.
,
2008
,
Shape Memory Alloys—Modeling and Engineering Applications
,
Springer
,
New York
.
16.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
2009
,
Theory of Elastic Stability
,
Courier Dover Publications
,
Mineola, NY
.
17.
Kashdan
,
L.
,
Seepersad
,
C. C.
,
Haberman
,
M.
, and
Wilson
,
P. S.
,
2012
, “
Design, Fabrication, and Evaluation of Negative Stiffness Elements Using SLS
,”
Rapid Prototyping J.
,
18
(
3
), pp.
194
200
.10.1108/13552541211218108
You do not currently have access to this content.