Knowledge of crack initiation, propagation, and corresponding thermal shock failure evolution is prerequisite for effective maintenance of civil engineering so as to avoid disaster. Experimental analysis of the cracking in the ceramic sheets subsequent to water quenching has been conducted. Based on statistical mesoscopic damage mechanics, it was revealed that there are four stages in the process of thermal shock evolution of ceramics subjected to water quenching. The multiple cracks interaction mechanism has been analyzed from the viewpoint of the evolution of the elastic strain energy and stress intensity factor.

References

1.
Lu
,
T. J.
, and
Fleck
,
N. A.
,
1998
, “
The Thermal Shock Resistance of Solids
,”
Acta Mater.
,
46
(
13
), pp.
4755
4768
.
2.
Bazant
,
Z. P.
,
Ohtsubo
,
H.
, and
Aoh
,
K.
,
1979
, “
Stability and Post-Critical Growth of a System of Cooling or Shrinkage Cracks
,”
Int. J. Fract.
,
15
(
5
), pp.
443
456
.
3.
Nemat-Nasser
,
S.
,
1978
, “
Stability of a System of Interacting Cracks
,”
Int. J. Eng. Sci.
,
16
(
4
), pp.
277
285
.
4.
Nemat-Nasser
,
S.
,
Keer
,
L. M.
, and
Parihar
,
K. S.
,
1978
, “
Unstable Growth of Thermally Induced Interacting Cracks in Brittle Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
409
430
.
5.
Jagla
,
E. A.
,
2002
, “
Stable Propagation of an Ordered Array of Cracks During Directional Drying
,”
Phys. Rev. E
,
65
(
4
), p.
046147
.
6.
Bahr
,
H.-A.
,
Weiss
,
H.-J.
,
Bahr
,
U.
,
Hofmann
,
M.
,
Fischer
,
G.
,
Lampenscherf
,
S.
, and
Balke
,
H.
,
2010
, “
Scaling Behavior of Thermal Shock Crack Patterns and Tunneling Cracks Driven by Cooling or Drying
,”
J. Mech. Phys. Solids
,
58
(
9
), pp.
1411
1421
.
7.
Bahr
,
H. A.
,
Bahr
,
U.
, and
Petzold
,
A.
,
1992
, “
1-D Deterministic Crack Pattern-Formation as a Growth-Process With Restrictions
,”
Europhys. Lett.
,
19
(
6
), pp.
485
490
.
8.
Bahr
,
H. A.
,
Fischer
,
G.
, and
Weiss
,
H. J.
,
1986
, “
Thermal-Shock Crack Patterns Explained by Single and Multiple Crack-Propagation
,”
J. Mater. Sci.
,
21
(
8
), pp.
2716
2720
.
9.
Jenkins
,
D. R.
,
2005
, “
Optimal Spacing and Penetration of Cracks in a Shrinking Slab
,”
Phys. Rev. E
,
71
(
5
), p.
056117
.
10.
Jiang
,
C. P.
,
Wu
,
X. F.
,
Li
,
J.
,
Song
,
F.
,
Shao
,
Y. F.
,
Xu
,
X. H.
, and
Yan
,
P.
,
2012
, “
A Study of the Mechanism of Formation and Numerical Simulations of Crack Patterns in Ceramics Subjected to Thermal Shock
,”
Acta Mater.
,
60
(
11
), pp.
4540
4550
.
11.
Li
,
J.
,
Song
,
F.
, and
Jiang
,
C.
,
2013
, “
Direct Numerical Simulations on Crack Formation in Ceramic Materials Under Thermal Shock by Using a Non-Local Fracture Model
,”
J. Eur. Ceram. Soc.
,
33
(
13–14
), pp.
2677
2687
.
12.
Li
,
J.
,
Song
,
F.
, and
Jiang
,
C.
,
2015
, “
A Non-Local Approach to Crack Process Modeling in Ceramic Materials Subjected to Thermal Shock
,”
Eng. Fract. Mech.
,
133
, pp.
85
98
.
13.
Bourdin
,
B.
,
Marigo
,
J.-J.
,
Maurini
,
C.
, and
Sicsic
,
P.
,
2014
, “
Morphogenesis and Propagation of Complex Cracks Induced by Thermal Shocks
,”
Phys. Rev. Lett.
,
112
(
1
), p.
014301
.
14.
Sicsic
,
P.
,
Mango
,
J.-J.
, and
Maurini
,
C.
,
2014
, “
Initiation of a Periodic Array of Cracks in the Thermal Shock Problem: A Gradient Damage Modeling
,”
J. Mech. Phys. Solids
,
63
, pp.
256
284
.
15.
Yang
,
Y. F.
,
Tang
,
C. A.
, and
Xia
,
K. W.
,
2012
, “
Study on Crack Curving and Branching Mechanism in Quasi-Brittle Materials Under Dynamic Biaxial Loading
,”
Int. J. Fract.
,
177
(
1
), pp.
53
72
.
16.
Tang
,
S.
,
Tang
,
C. A.
,
Liang
,
Z.
, and
Qinglei
,
Y. U.
,
2008
, “
Failure Process Analysis of Ceramic Materials Subjected to Thermal Shock
,”
Acta Mater. Compositae Sin.
,
25
(
2
), pp.
115
122
.
17.
Tang
,
S. B.
,
Zhang
,
H.
,
Tang
,
C. A.
, and
Liu
,
H. Y.
,
2016
, “
Numerical Model for the Cracking Behavior of Heterogeneous Brittle Solids Subjected to Thermal Shock
,”
Int. J. Solids Struct.
,
80
, pp.
520
531
.
18.
Xu
,
X. H.
,
Ma
,
S. P.
,
Xia
,
M. F.
,
Ke
,
F. J.
, and
Bai
,
Y. L.
,
2004
, “
Damage Evaluation and Damage Localization of Rock
,”
Theor. Appl. Fract. Mech.
,
42
(
2
), pp.
131
138
.
19.
Rong
,
F.
,
Wang
,
H.
,
Xia
,
M.
,
Ke
,
F.
, and
Bai
,
Y.
,
2006
, “
Catastrophic Rupture Induced Damage Coalescence in Heterogeneous Brittle Media
,”
Pure Appl. Geophys.
,
163
(
9
), pp.
1847
1865
.
20.
Bai
,
Y. L.
,
Xia
,
M. F.
,
Ke
,
F. J.
, and
Li
,
H. L.
,
2006
,
Damage Field Equation and Criterion for Damage Localization
,
Springer
,
Beijing
.
21.
Devroye
,
L.
,
1986
,
Non-Uniform Random Variate Generation
,
Springer
,
New York
.
22.
Mazars
,
J.
, and
Pijaudiercabot
,
G.
,
1989
, “
Continuum Damage Theory—Application to Concrete
,”
J. Eng. Mech.
,
115
(
2
), pp.
345
365
.
23.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2009
, “
Application of Extended Mohr–Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
(
1
), pp.
1
20
.
24.
Zhou
,
Z.
,
Song
,
F.
,
Shao
,
Y.
,
Meng
,
S.
,
Jiang
,
C.
, and
Li
,
J.
,
2012
, “
Characteristics of the Surface Heat Transfer Coefficient for Al2O3 Ceramic in Water Quench
,”
J. Eur. Ceram. Soc.
,
32
(
12
), pp.
3029
3034
.
25.
Zhang
,
Y. L.
, and
Ma
,
J. P.
,
2006
,
Applicable Ceramic Material Manual
,
Chemical Industry Press
,
Beijing
.
26.
Kingery
,
W. D.
,
1955
, “
Factors Affecting Thermal Stress Resistance of Ceramic Materials
,”
J. Am. Ceram. Soc.
,
38
(
1
), pp.
3
15
.
27.
Xu
,
X. H.
,
Tian
,
C.
,
Sheng
,
S. L.
,
Lin
,
Z. K.
, and
Song
,
F.
,
2014
, “
Characterization of Thermal-Shock Cracks in Ceramic Bars
,”
Sci. China: Phys., Mech. Astron.
,
57
(
12
), pp.
2205
2208
.
You do not currently have access to this content.