The elasticity-based, locally exact homogenization theory for unidirectional composites with hexagonal and tetragonal symmetries and transversely isotropic phases is further extended to accommodate cylindrically orthotropic reinforcement. The theory employs Fourier series representations of the fiber and matrix displacement fields in cylindrical coordinate system that satisfy exactly equilibrium equations and continuity conditions in the interior of the unit cell. Satisfaction of periodicity conditions for the inseparable exterior problem is efficiently accomplished using previously introduced balanced variational principle which ensures rapid displacement solution convergence with relatively few harmonic terms. As demonstrated in this contribution, this also applies to cylindrically orthotropic reinforcement for which the eigenvalues depend on both the orthotropic elastic moduli and harmonic number. The solution's demonstrated stability facilitates rapid identification of cylindrical orthotropy's impact on homogenized moduli and local fields in wide ranges of fiber volume fraction and orthotropy ratios. The developed theory provides a unified approach that accounts for cylindrical orthotropy explicitly in both the homogenization process and local stress field calculations previously treated separately through a fiber replacement scheme. Comparison of the locally exact solution with classical solutions based on an idealized microstructural representation and fiber moduli replacement with equivalent transversely isotropic properties delineates their applicability and limitations.

References

1.
Lekhnitskii
,
S. G.
,
1963
,
Theory of Elasticity of an Anisotropic Elastic Body
,
Holden-Day
,
San Francisco, CA
.
2.
Antman
,
S. S.
, and
Negron-Marrero
,
P. V.
,
1987
, “
The Remarkable Nature of Radially Symmetric Equilibrium States of Aeolotropic Nonlinearly Elastic Bodies
,”
J. Elasticity
,
18
(
2
), pp.
131
164
.
3.
Cowin
,
S. C.
, and
Fraldi
,
M.
,
2005
, “
On Singularities Associated With the Curvilinear Anisotropic Elastic Symmetries
,”
Int. J. Non-Linear Mech.
,
40
, pp.
361
371
.
4.
Tarn
,
J.-Q.
,
2002
, “
Stress Singularity in an Elastic Cylinder of Cylindrically Anisotropic Materials
,”
J. Elasticity
,
69
, pp.
1
13
.
5.
Pindera
,
M. J.
,
1991
, “
Local/Global Stiffness Matrix Formulation for Composite Materials and Structures
,”
Compos. Eng.
,
1
(
2
), pp.
69
83
.
6.
Huang
,
X.
,
2009
, “
Fabrication and Properties of Carbon Fibers
,”
Materials
,
2
(
4
), pp.
2369
2403
.
7.
Herakovich
,
C. T.
,
1989
, “
Effects of Morphology on Properties of Graphite Composites
,”
Carbon
,
27
(
5
), pp.
663
678
.
8.
Avery
,
W. B.
, and
Herakovich
,
C. T.
,
1986
, “
Effect of Fiber Anisotropy on Thermal Stresses in Fibrous Composites
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
751
756
.
9.
Hashin
,
Z.
,
1990
, “
Thermoelastic Properties and Conductivity of Carbon/Carbon Fiber Composites
,”
Mech. Mater.
,
8
(
4
), pp.
293
308
.
10.
Knott
,
T. W.
, and
Herakovich
,
C. T.
,
1991
, “
Effect of Fiber Orthotropy on Effective Composite Properties
,”
J. Compos. Mater.
,
25
, pp.
732
759
.
11.
Christensen
,
R. M.
,
1994
, “
Properties of Carbon Fibers
,”
J. Mech. Phys. Solids
,
42
(
4
), pp.
681
695
.
12.
Chatzigeorgiou
,
G.
,
Efendiev
,
Y.
, and
Lagoudas
,
D. C.
,
2011
, “
Homogenization of Aligned ‘Fuzzy Fiber’ Composites
,”
Int. J. Solids Struct.
,
48
(
19
), pp.
2668
2680
.
13.
Chatzigeorgiou
,
G.
,
Seidel
,
D.
, and
Lagoudas
,
D. C.
,
2012
, “
Effective Mechanical Properties of ‘Fuzzy Fiber’ Composites
,”
Composites, Part B
,
43
(
6
), pp.
2577
2593
.
14.
Nemat-Nasser
,
S.
,
Iwakuma
,
T.
, and
Hejazi
,
M.
,
1982
, “
On Composites With Periodic Structures
,”
Mech. Mater.
,
1
(
3
), pp.
239
267
.
15.
Pindera
,
M.-J.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Bansal
,
Y.
,
2009
, “
Micromechanics of Spatially Uniform Heterogeneous Media: A Critical Review and Emerging Approaches
,”
Composites, Part B
,
40
(
5
), pp.
349
378
.
16.
Charalambakis
,
N.
,
2010
, “
Homogenization Techniques and Micromechanics. A Survey and Perspectives
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030803
.
17.
Cavalcante
,
M. A. A.
,
Pindera
,
M.-J.
, and
Khatam
,
H.
,
2012
, “
Finite-Volume Micromechanics of Periodic Materials: Past, Present and Future
,”
Composites, Part B
,
43
(
6
), pp.
2521
2543
.
18.
Guinovart-Diaz
,
R.
,
Bravo-Castillero
,
J.
,
Rodriguez-Ramos
,
R.
, and
Sabina
,
F. J.
,
2001
, “
Closed-Form Expressions for the Effective Coefficients of a Fiber-Reinforced Composite With Transversely Isotropic Constituents: I. Elastic and Hexagonal Symmetry
,”
J. Mech. Phys. Solids
,
49
(
7
), pp.
1445
1462
.
19.
Wang
,
J.
,
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2005
, “
An Embedding Method for Modeling Micromechanical Behavior and Macroscopic Properties of Composite Materials
,”
Int. J. Solids Struct.
,
42
, pp.
4588
4612
.
20.
Crouch
,
S. L.
, and
Mogilevskaya
,
S. G.
,
2006
, “
Loosening of Elastic Inclusions
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1638
1668
.
21.
Drago
,
A. S.
, and
Pindera
,
M.-J.
,
2008
, “
A Locally Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051010
.
22.
Caporale
,
A.
,
Feo
,
L.
, and
Luciano
,
R.
,
2015
, “
Eigenstrain and Fourier Series for Evaluation of Elastic Local Fields and Effective Properties of Periodic Composites
,”
Composites, Part B
,
81
, pp.
251
258
.
23.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
Stolarski
,
H. K.
, and
Benusiglio
,
A.
,
2010
, “
Equivalent Inhomogeneity Method for Evaluating the Effective Elastic Properties of Unidirectional Multi-Phase Composites With Surface/Interface Effects
,”
Int. J. Solids Struct.
,
47
, pp.
407
418
.
24.
Wang
,
G.
, and
Pindera
,
M.-J.
, “
Locally-Exact Homogenization Theory for Transversely Isotropic Unidirectional Composites
,”
Mech. Res. Commn.
(in press).
25.
Wang
,
G.
, and
Pindera
,
M.-J.
,
2016
, “
Locally-Exact Homogenization of Unidirectional Composites With Coated or Hollow Reinforcement
,”
Mater. Des.
,
93
, pp.
514
528
.
26.
Bensoussan
,
A.
,
Lions
,
J.-L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
North-Holland
,
Amsterdam, The Netherlands
.
27.
Suquet
,
P. M.
,
1987
,
Elements of Homogenization for Inelastic Solid Mechanics
(Lecture Notes in Physics, Vol.
272
),
Springer-Verlag
,
Berlin
, pp.
193
278
.
28.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
29.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
(
1226
), pp.
376
396
.
You do not currently have access to this content.