The nonlinear response of a flexible structure, subjected to generally supported conditions with nonlinearities, is investigated for the first time. An analytical procedure is proposed first. Moreover, a simulation technique usually employed in static analysis is developed for confirmation. Generally, ordinary perturbation methods could analyze dynamics of flexible structures with linear boundary conditions. As nonlinear boundaries are taken into account, they are out of operation for the modal shape that is hardly to be obtained, which is the key to the analysis. In order to overcome this, nonlinear boundary conditions are rescaled and the technique of modal revision is employed. Consequently, each governing equation with different time-scales could be analyzed exactly according to corresponding rescaled boundary conditions. The total response of any point at the flexible structure will be composed by harmonic responses yielded by the analytical method. Furthermore, the differential quadrature element method (DQEM), a numerical simulation technique could satisfy boundary conditions strictly, is introduced to certify analytical results. The comparison shows a reasonable agreement between these two methods. In fact, the accuracy of the analytical method for nonlinear boundaries could be explained in theory. Based on the certification, boundary nonlinearities are discussed in detail analytically and found to play an important role in responses. Because of the important role played by the nonlinear factors in the vibration and control of the flexible structure, this paper will open the vibration analysis and numerical study of the flexible structure with nonlinear constraints.

References

1.
Uenishi
,
K.
,
2012
, “
Elastodynamic Analysis of Underground Structural Failures Induced by Seismic Body Waves
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031014
.
2.
Sinha
,
S. K.
, and
Turner
,
K. E.
,
2011
, “
Natural Frequencies of a Pre-Twisted Blade in a Centrifugal Force Field
,”
J. Sound Vib.
,
330
(
11
), pp.
2655
2681
.
3.
Cheung
,
Y. K.
,
Au
,
F. T. K.
,
Zheng
,
D. Y.
, and
Cheng
,
Y. S.
,
1999
, “
Vibration of Multi-Span Non-Uniform Bridges Under Moving Vehicles and Trains by Using Modified Beam Vibration Functions
,”
J. Sound Vib.
,
228
(
3
), pp.
611
628
.
4.
Yu
,
D. L.
,
Paidoussis
,
M. P.
,
Shen
,
H. J.
, and
Wang
,
L.
,
2014
, “
Dynamic Stability of Periodic Pipes Conveying Fluid
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011008
.
5.
Wickert
,
J. A.
, and
Mote
,
C. D.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
738
744
.
6.
Yang
,
X. D.
,
Yang
,
S.
,
Qian
,
Y. J.
,
Zhang
,
W.
, and
Melnik
,
R. V. N.
,
2016
, “
Modal Analysis of the Gyroscopic Continua: Comparison of Continuous and Discretized Models
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
084502
.
7.
Silva
,
W.
,
2005
, “
Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities
,”
Nonlinear Dyn.
,
39
(
1–2
), pp.
25
62
.
8.
Li
,
J. L.
, and
Yan
,
S. Z.
,
2014
, “
Thermally Induced Vibration of Composite Solar Array With Honeycomb Panels in Low Earth Orbit
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
419
432
.
9.
Zu
,
W. Z.
, and
Han
,
R. P. S.
,
1992
, “
Natural Frequencies and Normal Modes of a Spinning Timoshenko Beam With General Boundary Conditions
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S197
S204
.
10.
Kang
,
K. H.
, and
Kim
,
K. J.
,
1996
, “
Modal Properties of Beams and Plates on Resilient Supports With Rotational and Translational Complex Stiffness
,”
J. Sound Vib.
,
190
(
2
), pp.
207
220
.
11.
Wang
,
J. T. S.
, and
Lin
,
C. C.
,
1996
, “
Dynamic Analysis of Generally Supported Beams Using Fourier Series
,”
J. Sound Vib.
,
196
(
3
), pp.
285
293
.
12.
Kim
,
H. K.
, and
Kim
,
M. S.
,
2001
, “
Vibration of Beams With Generally Restrained Boundary Conditions Using Fourier Series
,”
J. Sound Vib.
,
245
(
5
), pp.
771
784
.
13.
Lai
,
H. Y.
,
Hsu
,
J. C.
, and
Chen
,
C. K.
,
2008
, “
An Innovative Eigenvalue Problem Solver for Free Vibration of Euler-Bernoulli Beam by Using the Adomian Decomposition Method
,”
Comput. Math. Appl.
,
56
(
12
), pp.
3204
3220
.
14.
Hsu
,
J. C.
,
Lai
,
H. Y.
, and
Chen
,
C. K.
,
2009
, “
An Innovative Eigenvalue Problem Solver for Free Vibration of Uniform Timoshenko Beams by Using the Adomian Modified Decomposition Method
,”
J. Sound Vib.
,
325
(
1–2
), pp.
451
470
.
15.
Jankowski
,
R.
,
2003
, “
Nonlinear Rate Dependent Model of High Damping Rubber Bearing
,”
Bull. Earthquake Eng.
,
1
(
3
), pp.
397
403
.
16.
Ryan
,
K. L.
,
Kelly
,
J. M.
, and
Chopra
,
A. K.
,
2005
, “
Nonlinear Model for Lead-Rubber Bearings Including Axial-Load Effects
,”
ASCE J. Eng. Mech.
,
131
(
12
), pp.
1270
1278
.
17.
Mirmiran
,
A.
,
Zagers
,
K.
, and
Yuan
,
W. Q.
,
2000
, “
Nonlinear Finite Element Modeling of Concrete Confined by Fiber Composites
,”
Finite Elements Anal. Des.
,
35
(
1
), pp.
79
96
.
18.
Abbas
,
A. R.
,
Papagiannakis
,
A. T.
, and
Masad
,
E. A.
,
2004
, “
Linear and Nonlinear Viscoelastic Analysis of the Microstructure of Asphalt Concretes
,”
J. Mater. Civ. Eng.
,
16
(
2
), pp.
133
139
.
19.
Trifunac
,
M. D.
, and
Todorovska
,
M. I.
,
1996
, “
Nonlinear Soil Response—1994 Northridge, California, Earthquake
,”
ASCE J. Eng. Mech.
,
122
(
9
), pp.
725
735
.
20.
Hartzell
,
S.
,
Bonilla
,
L. F.
, and
Williams
,
R. A.
,
2004
, “
Prediction of Nonlinear Soil Effects
,”
Bull. Seismol. Soc. Am.
,
94
(
5
), pp.
1609
1629
.
21.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.
22.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2007
, “
Quasiperiodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
325
331
.
23.
Gendelman
,
O. V.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M'Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.
24.
Vakakis
,
A. F.
, and
Gendelman
,
O. V.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
25.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sink in Linear Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.
26.
Yang
,
K.
,
Zhang
,
Y. W.
,
Ding
,
H.
,
Yang
,
T. Z.
,
Li
,
Y.
, and
Chen
,
L. Q.
,
2017
, “
Nonlinear Energy Sink for Whole-Spacecraft Vibration Reduction
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021011
.
27.
Georgiades
,
F.
, and
Vakakis
,
A. F.
,
2007
, “
Dynamics of a Linear Beam With an Attached Local Nonlinear Energy Sink
,”
Commun. Nonlinear Sci.
,
12
(5), pp.
643
651
.
28.
Samani
,
F. S.
, and
Pellicano
,
F.
,
2009
, “
Vibration Reduction on Beams Subjected to Moving Loads Using Linear and Nonlinear Dynamic Absorbers
,”
J. Sound Vib.
,
325
(
4–5
), pp.
742
754
.
29.
Kani
,
M.
,
Khadem
,
S. E.
,
Pashaei
,
M. H.
, and
Dardel
,
M.
,
2016
, “
Design and Performance Analysis of a Nonlinear Energy Sink Attached to a Beam With Different Support Conditions
,”
J. Mech. Eng. Sci.
,
230
(
4
), pp.
527
542
.
30.
Oueini
,
S. S.
,
Nayfeh
,
A. H.
, and
Pratt
,
J. R.
,
1998
, “
A Nonlinear Vibration Absorber for Flexible Structures
,”
Nonlinear Dyn.
,
15
(
3
), pp.
259
282
.
31.
Nayfeh
,
A. H.
, and
Mook
,
T. D.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
32.
Parker
,
R. G.
, and
Lin
,
Y.
,
2001
, “
Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
49
57
.
33.
Mao
,
X. Y.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2016
, “
Steady-State Response of a Fluid-Conveying Pipe With 3:1 Internal Resonance in Supercritical Regime
,”
Nonlinear Dyn.
,
86
(2), pp.
795
809
.
34.
Mao
,
X. Y.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2016
, “
Super-Harmonic Resonance and Multi-Frequency Responses of a Super-Critical Translating Beam
,”
J. Sound Vib.
,
385
, pp.
267
283
.
35.
Nayfeh
,
A. H.
,
Lacarbonara
,
W.
, and
Chin
,
C. M.
,
1999
, “
Nonlinear Normal Modes of Buckled Beams: Three-to-One and One-to-One Internal Resonances
,”
Nonlinear Dyn.
,
18
(3), pp.
253
273
.
36.
Yabuno
,
H.
, and
Nayfeh
,
A. H.
,
2001
, “
Nonlinear Normal Modes of a Parametrically Excited Cantilever Beam
,”
Nonlinear Dyn.
,
25
(1–3), pp.
65
77
.
37.
Sze
,
K. Y.
,
Chen
,
S. H.
, and
Huang
,
J. L.
,
2005
, “
The Incremental Harmonic Balance Method for Nonlinear Vibration of Axially Moving Beams
,”
J. Sound Vib.
,
281
(
3–5
), pp.
611
626
.
38.
Goodrich
,
C. S.
,
2012
, “
Positive Solutions to Boundary Value Problems With Nonlinear Boundary Conditions
,”
Nonlinear Anal.
,
75
(
1
), pp.
417
432
.
39.
Tang
,
G. S.
,
2017
, “
Blow-Up Phenomena for a Parabolic System With Gradient Nonlinearity Under Nonlinear Boundary Conditions
,”
Comput. Math. Appl.
,
74
(
3
), pp.
360
368
.
40.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2007
, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
,
302
(
3
), pp.
577
595
.
41.
Alshorbagy
,
A. E.
,
Eltaher
,
M. A.
, and
Mahmoud
,
F. F.
,
2011
, “
Free Vibration Characteristics of a Functionally Graded Beam by Finite Element Method
,”
Appl. Math. Modell.
,
35
(
1
), pp.
412
425
.
42.
Shen
,
W.
,
Li
,
D. S.
,
Zhang
,
S. F.
, and
Ou
,
J. P.
,
2017
, “
Analysis of Wave Motion in One-Dimensional Structures Through Fast-Fourier-Transform-Based Wavelet Finite Element Method
,”
J. Sound Vib.
,
400
, pp.
369
386
.
43.
Chen
,
L. Q.
, and
Ding
,
H.
,
2010
, “
Steady-State Transverse Response in Coupled Planar Vibration of Axially Moving Viscoelastic Beams
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011009
.
44.
Ding
,
H.
,
Zhang
,
G. C.
,
Chen
,
L. Q.
, and
Yang
,
S. P.
,
2012
, “
Forced Vibrations of Supercritically Transporting Viscoelastic Beams
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051007
.
45.
Yan
,
Q. Y.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2014
, “
Periodic Responses and Chaotic Behaviors of an Axially Accelerating Viscoelastic Timoshenko Beam
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1577
1591
.
46.
Wang
,
Y. L.
,
Wang
,
X. W.
, and
Zhou
,
Y.
,
2004
, “
Static and Free Vibration Analyses of Rectangular Plates by the New Version of the Differential Quadrature Element Method
,”
Int. J. Numer. Methods Eng.
,
59
(9), pp.
1207
1226
.
47.
Wang
,
X. W.
, and
Wang
,
Y. L.
,
2013
, “
Free Vibration Analysis of Multiple-Stepped Beams by the Differential Quadrature Element Method
,”
Appl. Math. Comput.
,
219
(11), pp.
5802
5810
.
You do not currently have access to this content.