Flexoelectricity (FE) refers to the two-way coupling between strain gradients and the electric field in dielectric materials, and is universal compared to piezoelectricity, which is restricted to dielectrics with noncentralsymmetric crystalline structure. Involving strain gradients makes the phenomenon of flexoelectricity size dependent and more important for nanoscale applications. However, strain gradients involve higher order spatial derivate of displacements and bring difficulties to the solution of flexoelectric problems. This dilemma impedes the application of such universal phenomenon in multiple fields, such as sensors, actuators, and nanogenerators. In this study, we develop a mixed finite element method (FEM) for the study of problems with both strain gradient elasticity (SGE) and flexoelectricity being taken into account. To use C0 continuous elements in mixed FEM, the kinematic relationship between displacement field and its gradient is enforced by Lagrangian multipliers. Besides, four types of 2D mixed finite elements are developed to study the flexoelectric effect. Verification as well as validation of the present mixed FEM is performed through comparing numerical results with analytical solutions for an infinite tube problem. Finally, mixed FEM is used to simulate the electromechanical behavior of a 2D block subjected to concentrated force or voltage. This study proves that the present mixed FEM is an effective tool to explore the electromechanical behaviors of materials with the consideration of flexoelectricity.

References

1.
Yudin
,
P.
, and
Tagantsev
,
A.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
.
2.
Kawai
,
H.
,
1969
, “
The Piezoelectricity of Poly (Vinylidene Fluoride)
,”
J. Appl. Phys.
,
8
(
7
), p.
975
.
3.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
, pp.
209
227
.
4.
Petrov
,
A. G.
,
2002
, “
Flexoelectricity of Model and Living Membranes
,”
Biochim. Biophys. Acta, Biomembr.
,
1561
(
1
), pp.
1
25
.
5.
Ma
,
W.
, and
Cross
,
L. E.
,
2006
, “
Flexoelectricity of Barium Titanate
,”
Appl. Phys. Lett.
,
88
(
23
), p.
232902
.
6.
Narvaez
,
J.
, and
Catalan
,
G.
,
2014
, “
Origin of the Enhanced Flexoelectricity of Relaxor Ferroelectrics
,”
Appl. Phys. Lett.
,
104
(
16
), p.
162903
.
7.
Shu
,
L.
,
Wei
,
X.
,
Jin
,
L.
,
Li
,
Y.
,
Wang
,
H.
, and
Yao
,
X.
,
2013
, “
Enhanced Direct Flexoelectricity in Paraelectric Phase of Ba(Ti0.87Sn0.13)O3 Ceramics
,”
Appl. Phys. Lett.
,
102
(
15
), p.
152904
.
8.
Tagantsev
,
A.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), p.
5883
.
9.
Čepič
,
M.
, and
Žekš
,
B.
,
2001
, “
Flexoelectricity and Piezoelectricity: The Reason for the Rich Variety of Phases in Antiferroelectric Smectic Liquid Crystals
,”
Phys. Rev. Lett.
,
87
(
8
), p.
085501
.
10.
Prost
,
J.
, and
Pershan
,
P. S.
,
1976
, “
Flexoelectricity in Nematic and Smectic—A Liquid Crystals
,”
J. Appl. Phys.
,
47
(
6
), pp.
2298
2312
.
11.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Sov. Phys. Solid State
,
5
(
10
), pp.
2069
2070
.
12.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y. W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
.
13.
Chu
,
B.
, and
Salem
,
D.
,
2012
, “
Flexoelectricity in Several Thermoplastic and Thermosetting Polymers
,”
Appl. Phys. Lett.
,
101
(
10
), p.
103905
.
14.
Lu
,
J.
,
Lv
,
J.
,
Liang
,
X.
,
Xu
,
M.
, and
Shen
,
S.
,
2016
, “
Improved Approach to Measure the Direct Flexoelectric Coefficient of Bulk Polyvinylidene Fluoride
,”
J. Appl. Phys.
,
119
(
9
), p.
094104
.
15.
Petrov
,
A. G.
,
2006
, “
Electricity and Mechanics of Biomembrane Systems: Flexoelectricity in Living Membranes
,”
Anal. Chim. Acta
,
568
(
1
), pp.
70
83
.
16.
Maranganti
,
R.
,
Sharma
,
N.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green's Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
17.
Abdollahi
,
A.
, and
Arias
,
I.
,
2015
, “
Constructive and Destructive Interplay Between Piezoelectricity and Flexoelectricity in Flexural Sensors and Actuators
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121003
.
18.
Mashkevich
,
V.
, and
Tolpygo
,
K.
,
1957
, “
Electrical, Optical and Elastic Properties of Diamond Type Crystals
,”
Sov. Phys. JETP-USSR
,
5
(
3
), pp.
435
439
.
19.
Majdoub
,
M.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
.
20.
Sharma
,
N.
,
Landis
,
C.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
(
2
), p.
024304
.
21.
Sharma
,
N.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2328
2350
.
22.
Hu
,
S.
, and
Shen
,
S.
,
2010
, “
Variational Principles and Governing Equations in Nano-Dielectrics With the Flexoelectric Effect
,”
Sci. China: Phys., Mech. Astron.
,
53
(
8
), pp.
1497
1504
.
23.
Shen
,
S.
, and
Hu
,
S.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
.
24.
Mohammadi
,
P.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
A Theory of Flexoelectric Membranes and Effective Properties of Heterogeneous Membranes
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011007
.
25.
Liu
,
L.
,
2014
, “
An Energy Formulation of Continuum Magneto-Electro-Elasticity With Applications
,”
J. Mech. Phys. Solids
,
63
, pp.
451
480
.
26.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
.
27.
Liang
,
X.
,
Zhang
,
R.
,
Hu
,
S.
, and
Shen
,
S.
,
2017
, “
Flexoelectric Energy Harvesters Based on Timoshenko Laminated Beam Theory
,”
J. Intell. Mater. Syst. Struct.
, epub.
28.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2014
, “
Computational Evaluation of the Flexoelectric Effect in Dielectric Solids
,”
J. Appl. Phys.
,
116
(
9
), p.
093502
.
29.
Ma
,
W.
, and
Cross
,
L. E.
,
2002
, “
Flexoelectric Polarization of Barium Strontium Titanate in the Paraelectric State
,”
Appl. Phys. Lett.
,
81
(
18
), pp.
3440
3442
.
30.
Ma
,
W.
, and
Cross
,
L. E.
,
2005
, “
Flexoelectric Effect in Ceramic Lead Zirconate Titanate
,”
Appl. Phys. Lett.
,
86
(
7
), p.
072905
.
31.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
387
421
.
32.
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2015
, “
Flexoelectricity in Two-Dimensional Crystalline and Biological Membranes
,”
Nanoscale
,
7
(
40
), pp.
16555
16570
.
33.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
34.
Mao
,
S.
, and
Purohit
,
P. K.
,
2014
, “
Insights Into Flexoelectric Solids From Strain-Gradient Elasticity
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081004
.
35.
Ray
,
M.
,
2014
, “
Exact Solutions for Flexoelectric Response in Nanostructures
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091002
.
36.
Ahluwalia
,
R.
,
Tagantsev
,
A. K.
,
Yudin
,
P.
,
Setter
,
N.
,
Ng
,
N.
, and
Srolovitz
,
D. J.
,
2014
, “
Influence of Flexoelectric Coupling on Domain Patterns in Ferroelectrics
,”
Phys. Rev. B
,
89
(
17
), p.
174105
.
37.
Chen
,
H.
,
Soh
,
A. K.
, and
Ni
,
Y.
,
2014
, “
Phase Field Modeling of Flexoelectric Effects in Ferroelectric Epitaxial Thin Films
,”
Acta Mech.
,
225
(
4–5
), pp.
1323
1333
.
38.
Gu
,
Y.
,
Hong
,
Z.
,
Britson
,
J.
, and
Chen
,
L.-Q.
,
2015
, “
Nanoscale Mechanical Switching of Ferroelectric Polarization Via Flexoelectricity
,”
Appl. Phys. Lett.
,
106
(
2
), p.
022904
.
39.
Chen
,
W.
,
Zheng
,
Y.
,
Feng
,
X.
, and
Wang
,
B.
,
2015
, “
Utilizing Mechanical Loads and Flexoelectricity to Induce and Control Complicated Evolution of Domain Patterns in Ferroelectric Nanofilms
,”
J. Mech. Phys. Solids
,
79
, pp.
108
133
.
40.
Yvonnet
,
J.
, and
Liu
,
L.
,
2017
, “
A Numerical Framework for Modeling Flexoelectricity and Maxwell Stress in Soft Dielectrics at Finite Strains
,”
Comput. Methods Appl. Mech. Eng.
,
313
, pp.
450
482
.
41.
Xia
,
Z. C.
, and
Hutchinson
,
J. W.
,
1996
, “
Crack Tip Fields in Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
44
(
10
), pp.
1621
1648
.
42.
Shu
,
J.
, and
Fleck
,
N.
,
1998
, “
The Prediction of a Size Effect in Microindentation
,”
Int. J. Solids Struct.
,
35
(
13
), pp.
1363
1383
.
43.
Herrmann
,
L.
,
1983
, “
Mixed Finite Elements for Couple-Stress Analysis
,”
Hybrid and Mixed FEM
,
S. N.
Atluri
,
R. H.
Gallagher
, and
O. C.
Zienkiewicz
, eds.,
Wiley
,
New York
.
44.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
(
1
), pp.
51
78
.
45.
Shu
,
J. Y.
,
King
,
W. E.
, and
Fleck
,
N. A.
,
1999
, “
Finite Elements for Materials With Strain Gradient Effects
,”
Int. J. Numer. Methods Eng.
,
44
(
3
), pp.
373
391
.
46.
Amanatidou
,
E.
, and
Aravas
,
N.
,
2002
, “
Mixed Finite Element Formulations of Strain-Gradient Elasticity Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
15
), pp.
1723
1751
.
47.
Mao
,
S.
,
Purohit
,
P. K.
, and
Aravas
,
N.
,
2016
, “
Mixed Finite-Element Formulations in Piezoelectricity and Flexoelectricity
,”
Proc. R. Soc. A
,
472
(
2190
), p.
20150879
.
48.
Aravas
,
N.
,
2011
, “
Plane-Strain Problems for a Class of Gradient Elasticity Models—A Stress Function Approach
,”
J. Elasticity
,
104
(
1–2
), pp.
45
70
.
49.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Taylor
,
R. L.
,
1977
,
The Finite Element Method
,
McGraw-Hill
,
London
.
50.
Gao
,
X.-L.
, and
Park
,
S.
,
2007
, “
Variational Formulation of a Simplified Strain Gradient Elasticity Theory and Its Application to a Pressurized Thick-Walled Cylinder Problem
,”
Int. J. Solids Struct.
,
44
(
22
), pp.
7486
7499
.
51.
Askes
,
H.
, and
Aifantis
,
E. C.
,
2011
, “
Gradient Elasticity in Statics and Dynamics: An Overview of Formulations, Length Scale Identification Procedures, Finite Element Implementations and New Results
,”
Int. J. Solids Struct.
,
48
(
13
), pp.
1962
1990
.
52.
Boffi
,
D.
, and
Lovadina
,
C.
,
1997
, “
Analysis of New Augmented Lagrangian Formulations for Mixed Finite Element Schemes
,”
Numer. Math.
,
75
(
4
), pp.
405
419
.
You do not currently have access to this content.