We propose a method to find an approximate theoretical solution to the mean first exit time (MFET) of a one-dimensional bistable kinetic system subjected to additive Poisson white noise, by extending an earlier method used to solve stationary probability density function. Based on the Dynkin formula and the properties of Markov processes, the equation of the mean first exit time is obtained. It is an infinite-order partial differential equation that is rather difficult to solve theoretically. Hence, using the non-Gaussian property of Poisson white noise to truncate the infinite-order equation for the mean first exit time, the analytical solution to the mean first exit time is derived by combining perturbation techniques with Laplace integral method. Monte Carlo simulations for the bistable system are applied to verify the validity of our approximate theoretical solution, which shows a good agreement with the analytical results.

References

1.
Xu
,
Y.
,
Li
,
Y. G.
,
Feng
,
J.
,
Li
,
J. J.
, and
Zhang
,
H. Q.
,
2015
, “
The Phase Transition in a Bi-Stable Duffing System Driven by Lévy Noise
,”
J. Stat. Phys.
,
158
(
1
), pp.
120
123
.
2.
Spanos
,
P. D.
,
Matteo
,
A. D.
,
Cheng
,
Y.
,
Pirrotta
,
A.
, and
Li
,
J.
,
2016
, “
Galerkin Scheme-Based Determination of Survival Probability of Oscillators With Fractional Derivative Elements
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121003
.
3.
Hänggi
,
P.
,
Talkner
,
P.
, and
Borkovec
,
M.
,
1990
, “
Reaction-Rate Theory: Fifty Years After Kramers
,”
Rev. Mod. Phys.
,
62
(
2
), pp.
251
341
.
4.
Xu
,
Y.
,
Feng
,
J.
,
Li
,
J. J.
, and
Zhang
,
H. Q.
,
2013
, “
Lévy Noise Induced Switch in the Gene Transcriptional Regulatory System
,”
Chaos
,
23
(
1
), p.
013110
.
5.
Xu
,
Y.
,
Li
,
Y. G.
,
Zhang
,
H.
,
Li
,
X. F.
, and
Kurths
,
J.
,
2016
, “
The Switch in a Genetic Toggle System With Lévy Noise
,”
Sci. Rep.
,
6
(
1
), p.
31505
.
6.
Zhu
,
W. Q.
,
1998
,
Random Vibration
,
Science Press
,
Beijing, China
, Chap. 7.
7.
Xu
,
Y.
,
Jin
,
X. Q.
,
Zhang
,
H. Q.
, and
Yang
,
T. T.
,
2013
, “
The Availability of Logical Operation Induced by Dichotomous Noise for a Nonlinear Bi-Stable System
,”
J. Stat. Phys.
,
152
(
4
), pp.
753
768
.
8.
Gao
,
T.
, and
Duan
,
J. Q.
,
2016
, “
Quantifying Model Uncertainty in Dynamical Systems Driven by Non-Gaussian Lévy Stable Noise With Observations on Mean Exit Time or Escape Probability
,”
Commun. Nonlinear Sci. Numer. Simul.
,
39
, pp.
1
6
.
9.
Spanos
,
P. D.
, and
Kougioumtzoglou
,
I. A.
,
2014
, “
Survival Probability Determination of Nonlinear Oscillators Subject to Evolutionary Stochastic Excitation
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051016
.
10.
Drugowitsch
,
J.
,
2016
, “
Fast and Accurate Monte Carlo Sampling of First-Passage Times From Wiener Diffusion Models
,”
Sci. Rep.
,
6
(
1
), p.
20490
.
11.
Xu
,
Y.
,
Zhu
,
Y. N.
,
Shen
,
J. W.
, and
Su
,
J. B.
,
2014
, “
Switch Dynamics for Stochastic Model of Genetic Toggle Switch
,”
Physica A
,
416
, pp.
461
466
.
12.
Iourtchenko
,
D.
,
Mo
,
E.
, and
Naess
,
A.
,
2008
, “
Reliability of Strongly Nonlinear Single Degree of Freedom Dynamic Systems by the Path Integration Method
,”
ASME J. Appl. Mech.
,
75
(
6
), pp.
1055
1062
.
13.
Proppe
,
C.
,
2002
, “
The Wong–Zakai Theorem for Dynamical Systems With Parametric Poisson White Noise Excitation
,”
Int. J. Eng. Sci.
,
40
(
10
), pp.
1165
1178
.
14.
Dykman
,
M. I.
,
2010
, “
Poisson-Noise-Induced Escape From a Metastable State
,”
Phys. Rev. E
,
81
(
5
), p.
051124
.
15.
Grigoriu
,
M.
,
2004
, “
Dynamic Systems With Poisson White Noise
,”
Nonlinear Dyn.
,
36
(
2–4
), pp.
255
266
.
16.
Zeng
,
Y.
, and
Zhu
,
W. Q.
,
2010
, “
Stochastic Averaging of Quasi-Linear Systems Driven by Poisson White Noise
,”
Probab. Eng. Mech.
,
25
(
1
), pp.
99
107
.
17.
Zeng
,
Y.
, and
Li
,
G.
,
2013
, “
Stationary Response of Bilinear Hysteretic System Driven by Poisson White Noise
,”
Probab. Eng. Mech.
,
33
, pp.
135
143
.
18.
Jia
,
W. T.
, and
Zhu
,
W. Q.
,
2014
, “
Stochastic Averaging of Quasi-Integrable and Non-Resonant Hamiltonian Systems Under Combined Gaussian and Poisson White Noise Excitations
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1271
1289
.
19.
Han
,
Q.
,
Xu
,
W.
,
Yue
,
X. L.
, and
Zhang
,
Y.
,
2015
, “
First-Passage Time Statistics in a Bi-Stable System Subject to Poisson White Noise by the Generalized Cell Mapping Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
23
(
1–3
), pp.
220
228
.
20.
Grigoriu
,
M.
,
2009
, “
Reliability of Linear Systems Under Poisson White Noise
,”
Probab. Eng. Mech.
,
24
(
3
), pp.
397
406
.
21.
Labou
,
M.
,
2003
, “
Solution of the First-Passage Problem by Advanced Monte Carlo Simulation Technique
,”
Strength Mater.
,
33
(
6
), pp.
588
593
.
22.
Köylüoğlu
,
H. U.
,
Nielsen
,
S. R. K.
, and
Iwankiewicz
,
R.
,
1994
, “
Reliability of Non-Linear Oscillators Subject to Poisson Driven Impulses
,”
J. Sound Vib.
,
176
(
1
), pp.
19
33
.
23.
Bucher
,
C.
, and
Di Paola
,
M.
,
2015
, “
Efficient Solution of the First Passage Problem by Path Integration for Normal and Poissonian White Noise
,”
Probab. Eng. Mech.
,
41
, pp.
121
128
.
24.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Response and First-Passage Statistics of Nonlinear Oscillators Via a Numerical Path Integral Approach
,”
J. Eng. Mech.
,
139
(
9
), pp.
1207
1217
.
25.
Köylüoğlu
,
H. U.
,
Nielsen
,
S. R. K.
, and
Iwankiewicz
,
R.
,
1995
, “
Response and Reliability of Poisson-Driven Systems by Path Integration
,”
J. Eng. Mech.
,
121
(
1
), pp.
117
130
.
26.
Di Paola
,
M.
, and
Falsone
,
G.
,
1993
, “
Itô and Stratonovich Integrals for Delta-Correlated Processes
,”
Probab. Eng. Mech.
,
8
(
3–4
), pp.
197
208
.
27.
Di Paola
,
M.
, and
Vasta
,
M.
,
1997
, “
Stochastic Integro-Differential and Differential Equations of Non-Linear Systems Excited by Parametric Poisson Pulses
,”
Int. J. Nonlinear Mech.
,
32
(
5
), pp.
855
862
.
28.
Grigoriu
,
M.
,
2004
, “
Characteristic Function Equations for the State of Dynamic Systems With Gaussian, Poisson and Lévy White Noise
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
449
461
.
29.
Di Paola
,
M.
, and
Falsone
,
G.
,
1993
, “
Stochastic Dynamics of Nonlinear Systems Driven by Non-Normal Delta-Correlated Processes
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
141
148
.
30.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1995
,
Probabilistic Structural Dynamics: Advance Theory and Applications
,
McGraw-Hill
,
New York
, Chap. 5.
31.
Risken
,
H.
,
1989
,
The Fokker-Planck Equation: Method of Solution and Application
,
Springer-Verlag
,
Berlin
, Chap. 4.
32.
Roberts
,
J. B.
,
1972
, “
System Response to Random Impulses
,”
J. Sound Vib.
,
24
(
1
), pp.
23
34
.
33.
Vasta
,
M.
,
1995
, “
Exact Stationary Solution for a Class of Non-Linear Systems Driven by a Non-Normal Delta-Correlated Process
,”
Int. J. Nonlinear Mech.
,
30
(
4
), pp.
407
418
.
34.
Duan
,
J. Q.
,
2015
,
An Introduction to Stochastic Dynamics
,
Science Press
,
Beijing, China
, Chap. 5.
35.
Cai
,
G. Q.
, and
Lin
,
Y. K.
,
1992
, “
Response Distribution of Non-Linear Systems Excited by Non-Gaussian Impulsive Noise
,”
Int. J. Nonlinear Mech.
,
27
(
6
), pp.
955
967
.
36.
Gardiner
,
C. W.
,
1985
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
,
Springer-Verlag
,
Berlin
, Chap. 5.
37.
Fox
,
R. F.
,
1986
, “
Functional-Calculus Approach to Stochastic Differential Equations
,”
Phys. Rev. A
,
33
(
1
), pp.
467
476
.
38.
Deng
,
M. L.
,
Fu
,
Y.
, and
Huang
,
Z. L.
,
2014
, “
Asymptotic Analytical Solutions of First-Passage Rate to Quasi-Nonintegrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081012
.
You do not currently have access to this content.