A formulation of statistical linearization for multi-degree-of-freedom (M-D-O-F) systems subject to combined mono-frequency periodic and stochastic excitations is presented. The proposed technique is based on coupling the statistical linearization and the harmonic balance concepts. The steady-state system response is expressed as the sum of a periodic (deterministic) component and of a zero-mean stochastic component. Next, the equation of motion leads to a nonlinear vector stochastic ordinary differential equation (ODE) for the zero-mean component of the response. The nonlinear term contains both the zero-mean component and the periodic component, and they are further equivalent to linear elements. Furthermore, due to the presence of the periodic component, these linear elements are approximated by averaging over one period of the excitation. This procedure leads to an equivalent system whose elements depend both on the statistical moments of the zero-mean stochastic component and on the amplitudes of the periodic component of the response. Next, input–output random vibration analysis leads to a set of nonlinear equations involving the preceded amplitudes and statistical moments. This set of equations is supplemented by another set of equations derived by ensuring, in a harmonic balance sense, that the equation of motion of the M-D-O-F system is satisfied after ensemble averaging. Numerical examples of a 2-D-O-F nonlinear system are considered to demonstrate the reliability of the proposed technique by juxtaposing the semi-analytical results with pertinent Monte Carlo simulation data.

References

1.
Nayfeh
,
A. H.
,
2008
,
Perturbation Methods
,
John Wiley & Sons
,
New York
.
2.
Nayfeh
,
A. H.
,
Nayfeh
,
J. F.
, and
Mook
,
D. T.
,
1992
, “
On Methods for Continuous Systems With Quadratic and Cubic Nonlinearities
,”
Nonlinear Dyn.
,
3
(
2
), pp.
145
162
.
3.
Nayfeh
,
A. H.
, and
Nayfeh
,
S. A.
,
1994
, “
On Nonlinear Modes of Continuous Systems
,”
ASME J. Vib. Acoust.
,
116
(
1
), pp.
129
136
.
4.
Kevorkian
,
J.
, and
Cole
,
J. D.
,
2013
,
Perturbation Methods in Applied Mathematics
,
Springer
,
New York
.
5.
Mickens
,
R. E.
,
1986
, “
A Generalization of the Method of Harmonic Balance
,”
J. Sound Vib.
,
116
(
3
), pp.
591
595
.
6.
Mickens
,
R. E.
,
1996
,
Oscillations in Planar Dynamic Systems
,
World Scientific
,
Singapore
.
7.
Genesio
,
R.
, and
Tesi
,
A.
,
1992
, “
Harmonic Balance Methods for the Analysis of Chaotic Dynamics in Nonlinear Systems
,”
Automatica
,
28
(
3
), pp.
531
548
.
8.
Caughey
,
T. K.
,
1963
, “
Equivalent Linearization Techniques
,”
J. Acoust. Soc. Am.
,
35
(
11
), pp.
1706
1711
.
9.
Iwan
,
W. D.
,
1973
, “
A Generalization of the Concept of Equivalent Linearization
,”
Int. J. Non-linear Mech.
,
8
(
3
), pp.
279
287
.
10.
Spanos
,
P. D.
,
1980
, “
Stochastic Linearization in Structural Dynamics
,”
ASME Appl. Mech. Rev.
,
34
(
1
), pp.
1
8
.
11.
Spanos
,
P. D.
,
1980
, “
Formulation of Stochastic Linearization for Symmetric or Asymmetric M.D.O.F. Nonlinear Systems
,”
J. Appl. Mech.
,
47
(
1
), pp.
209
211
.
12.
Miles
,
R. N.
,
1989
, “
An Approximate Solution for the Spectral Response of Duffing’s Oscillator With Random Input
,”
J. Sound Vib.
,
132
(
1
), pp.
43
49
.
13.
Grigoriu
,
M.
,
1995
, “
Equivalent Linearization for Poisson White Noise Input
,”
Probabilistic Eng. Mech.
,
10
(
1
), pp.
45
51
.
14.
Sobiechowski
,
C.
, and
Socha
,
L.
,
2000
, “
Statistical Linearization of the Duffing Oscillator Under Non-Gaussian External Excitation
,”
J. Sound Vib.
,
231
(
1
), pp.
19
35
.
15.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications Inc
,
New York
.
16.
Crandall
,
S. H.
,
2004
, “
On Using Non-Gaussian Distributions to Perform Statistical Linearization
,”
Int. J. Non-Linear Mech.
,
39
(
9
), pp.
1395
1406
.
17.
Socha
,
L.
,
2005
, “
Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part I: Theory
,”
ASME Appl. Mech. Rev.
,
58
(
3
), pp.
178
205
.
18.
Socha
,
L.
,
2005
, “
Linearization in Analysis of Nonlinear Stochastic Systems, Recent Results—Part II: Applications
,”
ASME Appl. Mech. Rev.
,
58
(
5
), pp.
303
315
.
19.
Elishakoff
,
I.
, and
Crandall
,
S. H.
,
2016
, “
Sixty Years of Stochastic Linearization Technique
,”
Meccanica
,
52
(
1–2
), pp.
299
305
.
20.
Fang
,
Y.
,
Liang
,
X.
, and
Zuo
,
M. J.
,
2018
, “
Effects of Friction and Stochastic Load on Transient Characteristics of a Spur Gear Pair
,”
Nonlinear Dyn.
,
93
(
2
), pp.
599
609
.
21.
Iyengar
,
R. N.
, and
Dash
,
P. K.
,
1978
, “
Study of the Random Vibration of Nonlinear Systems by the Gaussian Closure Technique
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
393
399
.
22.
Iyengar
,
R. N.
,
1986
, “
A Nonlinear System Under Combined Periodic and Random Excitation
,”
J. Stat. Phys.
,
44
(
5–6
), pp.
907
920
.
23.
Haiwu
,
R.
,
Wei
,
X.
,
Guang
,
M.
, and
Tong
,
F.
,
2001
, “
Response of a Duffing Oscillator to Combined Deterministic Harmonic and Random Excitation
,”
J. Sound Vib.
,
242
(
2
), pp.
362
368
.
24.
Anh
,
N. D.
, and
Hieu
,
N. N.
,
2012
, “
The Duffing Oscillator Under Combined Periodic and Random Excitations
,”
Probabilistic Eng. Mech.
,
30
, pp.
27
36
.
25.
Spanos
,
P. D.
,
Nava
,
V.
, and
Arena
,
F.
,
2011
, “
Coupled Surge-Heave-Pitch Dynamic Modeling of Spar-Moonpool-Riser Interaction
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
2
), p.
021301
.
26.
Spanos
,
P. D.
,
Strati
,
F. M.
,
Malara
,
G.
, and
Arena
,
F.
,
2018
, “
An Approach for Non-Linear Stochastic Analysis of U-Shaped OWC Wave Energy Converters
,”
Probabilistic Eng. Mech.
,
54
, pp.
44
52
.
27.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.
28.
Michael
,
Z. Q.
,
Chen
,
Y. H.
,
Huang
,
L.
, and
Chen
,
G.
,
2014
, “
Influence of Inerter on Natural Frequencies of Vibration Systems
,”
J. Sound Vib.
,
333
(
7
), pp.
1874
1887
.
29.
Zhang
,
Y. W.
,
Lu
,
Y. N.
,
Zhang
,
W.
,
Teng
,
Y. Y.
,
Yang
,
H. X.
,
Yang
,
T. Z.
, and
Chen
,
L. Q.
,
2019
, “
Nonlinear Energy Sink With Inerter
,”
Mech. Syst. Signal Process.
,
125
, pp.
52
64
.
30.
Lin
,
Y. K.
,
1976
,
Probabilistic Theory of Structural Dynamics
,
R. E. Krieger Pub. Co.
,
New York
.
31.
Spanos
,
P. D.
,
1987
, “
An Approach to Calculating Random Vibration Integrals
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
409
413
.
32.
Spanos
,
P. D.
, and
Miller
,
S. M.
,
1994
, “
Hilbert Transform Generalization of a Classical Random Vibration Integral
,”
ASME J. Appl. Mech.
,
61
(
3
), pp.
575
581
.
You do not currently have access to this content.