Abstract

Several two- and three-dimensional mixed-mode interface failure criteria are proposed for predicting delamination failure in multidirectional, laminate composites. The proposed criteria, based on the stress intensity factors K1, K2, and KIII, as well as the critical interface energy release rate Gic and phase angles ψ and ϕ, are examined using results obtained from Brazilian disk mixed-mode fracture toughness tests. Two material systems are considered. The first contains a delamination along an interface between a unidirectional fabric and a plain woven fabric. The second is composed of a plain woven fabric with fibers oriented in different directions in succeeding plies. The former was manufactured by means of a wet-layup and the latter is a prepreg. Finally, a statistical analysis is carried out to obtain a failure curve or surface with a 10% probability of unexpected failure and a 95% confidence. These curves or surfaces may be used to predict failure of structures containing these laminates and to assist in composite design.

References

1.
Reeder
,
J. R.
,
1993
, “A Bilinear Failure Criterion for Mixed-Mode Delamination,”
Composite Materials—Testing and Design (Eleventh Volume), ASTM STP 1206
,
J. R.
Camponeschi
, ed.
American Society for Testing and Materials
,
Philadelphia, PA
,
303
322
.
2.
Reeder
,
J. R.
,
2013
, “3-D Mixed Mode Delamination Fracture Criteria—An Experimentalist’s Perspective,”
Damage in Composites
,
B. V.
Sankar
,
A. M.
Waas
, and
M. W.
Hyer
, eds.,
Destech Publications
,
Lancaster, PA
, pp.
129
146
.
3.
Wu
,
E. M.
,
1967
, “
Application of Fracture Mechanics to Anisotropic Plates
,”
J. Appl. Mech.
,
34
(
4
), pp.
967
974
. 10.1115/1.3607864
4.
Donaldson
,
S. L.
,
1985
, “
Fracture Toughness Testing of Graphite/Epoxy and Graphite/PEEK Composites
,”
Compos
,
16
(
2
), pp.
103
112
. 10.1016/0010-4361(85)90616-0
5.
Mall
,
S.
, and
Kochhar
,
N. K.
,
1986
, “
Criterion for Mixed Mode Fracture in Composite Bonded Joints
,”
National Aeronautics and Space Administration
,
Washington, DC
, Technical Report No. NASA CR-178112.
6.
Chow
,
W. T.
, and
Atluri
,
S. N.
,
1997
, “
Stress Intensity Factors as the Fracture Parameters for Delamination Crack Growth in Composite Laminates
,”
Compos. Part B Eng.
,
28
(
4
), pp.
375
384
. 10.1016/S1359-8368(96)00056-X
7.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Tech.
,
56
(
4
), pp.
439
449
. 10.1016/0266-3538(96)00005-X
8.
Wang
,
C. H.
,
1997
, “
Fracture of Interface Cracks Under Combined Loading
,”
Eng. Fract. Mech.
,
56
(
1
), pp.
77
86
. 10.1016/S0013-7944(96)00111-7
9.
Erdogan
,
F.
, and
Sih
,
G. C.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
J. Basic Eng.
,
85
(
4
), pp.
519
525
. 10.1115/1.3656897
10.
Hussain
,
M. A.
,
Pu
,
S. L.
, and
Underwood
,
J.
,
1974
, “Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II,”
Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II, ASTM STP 560
,
P. C.
Paris
and
G. R.
Irwin
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
2
28
.
11.
Sih
,
G. C.
,
1973
,
Mechanics of Fracture I. Methods of Analysis and Solution of Crack Problems: Recent Developments in Fracture Mechanics, Theory and Methods of Solving Crack Problems
,
Noordhoff International Publishing
,
Leyden, The Netherlands
.
12.
Akisanya
,
A. R.
, and
Fleck
,
N. A.
,
1992
, “
Brittle Fracture of Adhesive Joints
,”
Int. J. Fract
,
58
(
2
), pp.
93
114
. 10.1007/BF00019971
13.
Wang
,
J. S.
, and
Suo
,
Z.
,
1990
, “
Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut-Sandwiches
,”
Acta. Metall. Mater.
,
38
(
7
), pp.
1279
1290
. 10.1016/0956-7151(90)90200-Z
14.
Banks-Sills
,
L.
, and
Ashkenazi
,
D.
,
2000
, “
A Note on Fracture Criteria for Interface Fracture
,”
Int. J. Fract.
,
103
(
2
), pp.
177
188
. 10.1023/A:1007612613338
15.
Banks-Sills
,
L.
,
Travitzky
,
N.
, and
Ashkenazi
,
D.
,
2000
, “
Interface Fracture Properties of a Bimaterial Ceramic Composite
,”
Mech. Mater.
,
32
(
12
), pp.
711
722
. 10.1016/S0167-6636(00)00042-9
16.
Banks-Sills
,
L.
,
Boniface
,
V.
, and
Eliasi
,
R.
,
2005
, “
Development of a Methodology for Determination of Interface Fracture Toughness of Laminate Composites—The 0°/90° Pair
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
663
680
. 10.1016/j.ijsolstr.2004.06.025
17.
Banks-Sills
,
L.
,
Freed
,
Y.
,
Fourman
,
V.
, and
Eliasi
,
R.
,
2006
, “
Fracture Toughness of the +45°/ − 45° Interface of a Laminate Composite
,”
Int. J. Fract.
,
141
(
1–2
), pp.
195
210
. 10.1007/s10704-006-0084-5
18.
Banks-Sills
,
L.
,
Travitzky
,
N.
,
Ashkenazi
,
D.
, and
Eliasi
,
R.
,
1999
, “
A Methodology for Measuring Interface Fracture Properties of Composite Materials
,”
Int. J. Fract.
,
99
(
3
), pp.
143
161
. 10.1023/A:1018642200610
19.
Banks-Sills
,
L.
,
Konovalov
,
N.
, and
Fliesher
,
A.
,
2010
, “
Comparison of Two and Three-dimensional Analyses of Interface Fracture Data Obtained From Brazilian Disk Specimens
,”
Int. J. Struct. Integr.
,
1
(
1
), pp.
20
42
. 10.1108/17579861011023775
20.
Mega
,
M.
, and
Banks-Sills
,
L.
,
2019
, “
Mixed Mode Interface Fracture Toughness of a Multi-Directional Composite—UD/Woven Pair
,”
Theor. Appl. Fract. Mech.
,
104
, p.
102323
. 10.1016/j.tafmec.2019.102323
21.
Dolev
,
O.
,
2019
, “
Mixed Mode Fracture Behavior of a Multi-Directional Plain Weave Laminate Composite Produced From a Prepreg
,” Ph.D. thesis,
Tel Aviv University
,
Israel
, in preparation.
22.
Abaqus
,
2017
,
Version 6.17
,
Dassault Systèmes Simulia Corp.
,
Johnston, RI
.
23.
Bathe
,
K. J.
,
2011
,
Automatic Dynamic Incremental Nonlinear Analysis Version 8.8.0
,
ADINA R& D, Inc
,
Watertown, MA
.
24.
Mega
,
M.
,
2019
, “
Mixed Mode Fracture Behavior of a Multi-Directional Laminate Composite Produced by a Wet-Layup
,” Ph.D. thesis,
Tel Aviv University
,
Israel
, in preparation.
25.
Mega
,
M.
, and
Banks-Sills
,
L.
,
2018
, “
Testing of Brazilian Disk Specimens With a Delamination Between a Transversely Isotropic and a Tetragonal Composite Ply
,”
Procedia Struct. Integr.
,
13
, pp.
123
130
. 10.1016/j.prostr.2018.12.021
26.
Banks-Sills
,
L.
,
2015
, “
Interface Fracture Mechanics: Theory and Experiment
,”
Int. J. Fract.
,
191
(
1–2
), pp.
131
146
. 10.1007/s10704-015-9997-1
27.
Zhao
,
J.
,
Wang
,
H.
, and
Liu
,
B.
,
2017
, “
Two Objective and Independent Fracture Parameters for Interface Cracks
,”
J. Appl. Mech.
,
84
(
4
), pp.
1
9
. 10.1115/1.4035932
28.
Natrella
,
M.
,
1963
,
Experimental Statistics. National Bureau of Standards Handbook 91
,
U.S. Government Printing Office
,
Washington, DC
,
2–13
2–15
.
29.
Whitmore
,
G.
,
1986
, “
Prediction Limits for a Univariate Normal Observation
,”
Am. Stat.
,
40
(
2
), pp.
141
143
. 10.2307/2684875
30.
Luko
,
S.
, and
Neubauer
,
D.
,
2011
, “
Statistical Intervals—Part 2: The Predicition Interval
,”
Stand News
,
39
(
4
), pp.
12
13
.
You do not currently have access to this content.