Abstract

In this work, we propose a thermodynamically consistent phase-field model for the brittle fracture analysis of thick plates. A hybrid model, which is fast and accurate, is proposed for the phase-field modeling of fracture in thick plates. Reddy’s third-order shear deformation theory (TSDT) has been employed to capture the transverse shear deformation effects in thick plates. Governing equations are derived by seeking the minimization of the free-energy functional. A staggered solution algorithm with arc length control is used to solve the governing equations within the finite element framework. The nucleation and propagation of cracks in the thick plates subjected to uniformly distributed load is presented. The mechanical response corresponding to phase-field models based on both the classical plate theory and TSDT has been compared for the case of thick plates and a significant difference between these two models is observed. Parametric studies have been carried out to illustrate the effects of boundary conditions, shear deformation, and the mesh size.

References

1.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
,
221
(
582–593
), pp.
163
198
. 10.1098/rsta.1921.0006
2.
Marigo
,
J. J.
,
Maurini
,
C.
, and
Pham
,
K.
,
2016
, “
An Overview of the Modelling of Fracture by Gradient Damage Models
,”
Meccanica
,
51
(
12
), pp.
3107
3128
. 10.1007/s11012-016-0538-4
3.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
. 10.1016/0022-5096(60)90013-2
4.
Barenblatt
,
G.
,
1962
, “
The Mathematical Theory of Equilibrium of Cracks in Brittle Fracture
,”
Adv. Appl. Fract.
,
7
(
1
), pp.
55
129
.
5.
Alfano
,
G.
, and
Crisfield
,
M. A
,
2001
, “
Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues
,”
Int. J. Numer. Methods Eng.
,
50
(
7
), pp.
1701
1736
. 10.1002/nme.93
6.
Jirásek
,
M.
,
2004
, “
Nonlocal Theories in Continuum Mechanics
,”
Acta Polytech.
,
44
(
5-6
), pp.
16
34
.
7.
de Borst
,
R.
,
Sluys
,
L. J.
, and
Mühlhaus
,
H. B.
,
1993
, “
Fundamental Issues in Finite Element Analysis of Localization of Deformation
,”
Eng. Comput.
,
10
(
2
), pp.
99
121
. 10.1108/eb023897
8.
Bažant
,
Z. P.
, and
Pijaudier-Cabot
,
G.
,
1988
, “
Nonlocal Continuum Damage, Localization Instability and Convergence
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
521
539
.
9.
Peerlings
,
R. H. J.
,
de Borst
,
R.
, and
Brekelmans
,
W. A. M.
,
1996
, “
Gradient-Enhanced Damage for Quasi-Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
39
(
39
), pp.
3391
3403
. 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
10.
Pijaudier-Cabot
,
G.
, and
Burlion
,
N.
,
1996
, “
Damage and Localisation in Elastic Materials With Voids
,”
Int. J. Mech. Cohesive Frict. Mater.
,
1
(
2
), pp.
129
144
. 10.1002/(SICI)1099-1484(199604)1:2<129::AID-CFM7>3.0.CO;2-2
11.
Lorentz
,
E.
,
2017
, “
A Nonlocal Damage Model for Plain Concrete Consistent With Cohesive Fracture
,”
Int. J. Fract.
,
207
(
2
), pp.
123
159
. 10.1007/s10704-017-0225-z
12.
Areias
,
P.
, and
Rabczuk
,
T.
,
2013
, “
Finite Strain Fracture of Plates and Shells With Configurational Forces and Edge Rotations
,”
Int. J. Numer. Methods Eng.
,
94
(
12
), pp.
1099
1122
. 10.1002/nme.4477
13.
Borden
,
M. J.
,
Hughes
,
T. J. R.
,
Landis
,
C. M.
,
Anvari
,
A.
, and
Lee
,
I. J.
,
2016
, “
A Phase-Field Formulation for Fracture in Ductile Materials: Finite Deformation Balance Law Derivation, Plastic Degradation, and Stress Triaxiality Effects
,”
Comput. Methods Appl. Mech. Eng.
,
312
(
1
), pp.
130
166
. 10.1016/j.cma.2016.09.005
14.
Wu
,
J. Y.
, and
Nguyen
,
V. P.
,
2018
, “
A Length Scale Insensitive Phase Field Damage Model for Fracture
,”
J. Mech. Phys. Solids
,
119
(
1
), pp.
20
42
. 10.1016/j.jmps.2018.06.006
15.
Teichtmeister
,
S.
,
Kienle
,
D.
,
Aldakheel
,
F.
, and
Keip
,
M. A.
,
2017
, “
Phase Field Modelling of Fracture in Anisotropic Brittle Solids
,”
Int. J. Non Linear Mech.
,
97
(
1
), pp.
1
21
. 10.1016/j.ijnonlinmec.2017.06.018
16.
Alessi
,
R.
,
Ambati
,
M.
,
Gerasimov
,
T.
,
Vidoli
,
S.
, and
De Lorenzis
,
L.
,
2018
, “
Comparison of Phase-Field Models of Fracture Coupled With Plasticity
,”
Adv. Comput. Plast.-Linear Mech.
,
46
(
1
), pp.
1
21
.
17.
Mandal
,
T. K.
,
Nguyen
,
V. P.
, and
Heidarpour
,
A.
,
2019
, “
Phase Field and Gradient Enhanced Damage Models for Quasi-Brittle Failure: A Numerical Comparative Study
,”
Eng. Fract. Mech.
,
207
, pp.
48
67
. 10.1016/j.engfracmech.2018.12.013
18.
Tanné
,
E.
,
Li
,
T.
,
Bourdin
,
B.
,
Marigo
,
J. J.
, and
Maurini
,
C.
,
2018
, “
Crack Nucleation in Variational Phase Field Models of Brittle Fracture
,”
J. Mech. Phys. Solids
,
110
(
1
), pp.
80
99
. 10.1016/j.jmps.2017.09.006
19.
Pham
,
K. H.
,
Ravi-Chandar
,
K.
, and
Landis
,
C. M.
,
2017
, “
Experimental Validation of a Phase Field Model for Fracture
,”
Int. J. Fract.
,
205
(
1
), pp.
83
101
. 10.1007/s10704-017-0185-3
20.
Areias
,
P.
,
Reinoso
,
J.
,
Camanho
,
P. P.
,
César de Sá
,
J.
, and
Rabczuk
,
T.
,
2018
, “
Effective 2D and 3D Crack Propagation With Local Mesh Refinement and the Screened Poisson Equation
,”
Eng. Fract. Mech.
,
189
, pp.
339
360
. 10.1016/j.engfracmech.2017.11.017
21.
Msekh
,
M. A.
,
Cuong
,
N. H.
,
Zi
,
G.
,
Areias
,
P.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2018
, “
Fracture Properties Prediction of Clay/epoxy Nano Composites with Interphase Zones Using a Phase Field Model
,”
Eng. Fract. Mech.
,
188
, pp.
287
299
. 10.1016/j.engfracmech.2017.08.002
22.
Feng
,
D. C.
, and
Wu
,
J. Y.
,
2018
, “
Phase-Field Regularized Cohesive Zone Model (CZM) and Size Effect of Concrete
,”
Eng. Fract. Mech.
,
197
, pp.
66
79
. 10.1016/j.engfracmech.2018.04.038
23.
Wang
,
Z.
, and
Poh
,
L. H.
,
2018
, “
A Homogenized Localizing Gradient Damage Model With Micro Inertia Effect
,”
J. Mech. Phys. Solids
,
116
, pp.
370
390
. 10.1016/j.jmps.2018.04.007
24.
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
1998
, “
Revisiting Brittle Fracture As An Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
. 10.1016/S0022-5096(98)00034-9
25.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids
,
48
(
4
), pp.
797
826
. 10.1016/S0022-5096(99)00028-9
26.
Ambrosio
,
L.
, and
Tortorelli
,
V. M.
,
1990
, “
Approximation of Functional Depending on Jumps by Elliptic Functional Via T-Convergence
,”
Commun. Pure Appl. Math.
,
43
(
8
), pp.
999
1036
. 10.1002/cpa.3160430805
27.
Del Piero
,
G.
,
Lancioni
,
G.
, and
March
,
R.
,
2007
, “
A Variational Model for Fracture Mechanics: Numerical Experiments
,”
J. Mech. Phys. Solids
,
55
(
12
), pp.
2513
2537
. 10.1016/j.jmps.2007.04.011
28.
Ambati
,
M.
, and
De Lorenzis
,
L.
,
2016
, “
Phase-Field Modeling of Brittle and Ductile Fracture in Shells With Isogeometric NURBS-Based Solid-Shell Elements
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
351
373
. 10.1016/j.cma.2016.02.017
29.
Miehe
,
C.
,
Welschinger
,
F.
, and
Hofacker
,
M.
,
2010
, “
Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field FE Implementations
,”
Int. J. Numer. Methods Eng.
,
83
(
10
), pp.
1273
1311
. 10.1002/nme.2861
30.
Ambati
,
M.
,
Gerasimov
,
T.
, and
De Lorenzis
,
L.
,
2015
, “
Phase-Field Modeling of Ductile Fracture
,”
Comput. Mech.
,
55
(
5
), pp.
1017
1040
. 10.1007/s00466-015-1151-4
31.
Miehe
,
C.
,
Teichtmeister
,
S.
, and
Aldakheel
,
F.
,
2016
, “
Phase-Field Modelling of Ductile Fracture: a Variational Gradient-Extended Plasticity-Damage Theory and Its Micromorphic Regularization
,”
Philos. Trans. R. Soc. A
,
374
(
2066
), pp.
1
18
. 10.1098/rsta.2015.0170
32.
Borden
,
M. J.
,
Verhoosel
,
C. V.
,
Scott
,
M. A.
,
Hughes
,
T. J. R.
, and
Landis
,
C. M.
,
2012
, “
A Phase-Field Description of Dynamic Brittle Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
217–220
, pp.
77
95
. 10.1016/j.cma.2012.01.008
33.
Hofacker
,
M.
, and
Miehe
,
C.
,
2013
, “
A Phase Field Model of Dynamic Fracture: Robust Field Updates for the Analysis of Complex Crack Patterns
,”
Int. J. Numer. Methods Eng.
,
93
(
3
), pp.
276
301
. 10.1002/nme.4387
34.
Ambati
,
M.
,
Kruse
,
R.
, and
De Lorenzis
,
L.
,
2016
, “
A Phase-Field Model for Ductile Fracture At Finite Strains and Its Experimental Verification
,”
Comput. Mech.
,
57
(
1
), pp.
149
167
. 10.1007/s00466-015-1225-3
35.
Lee
,
S.
,
Wheeler
,
M. F.
, and
Wick
,
T.
,
2016
, “
Pressure and Fluid-Driven Fracture Propagation in Porous Media Using An Adaptive Finite Element Phase Field Model
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
111
132
. 10.1016/j.cma.2016.02.037
36.
Borden
,
M. J.
,
Hughes
,
T. J. R.
,
Landis
,
C. M.
, and
Verhoosel
,
C. V.
,
2014
, “
A Higher-Order Phase-Field Model for Brittle Fracture: Formulation and Analysis Within the Isogeometric Analysis Framework
,”
Comput. Methods Appl. Mech. Eng.
,
273
, pp.
100
118
. 10.1016/j.cma.2014.01.016
37.
Rajagopal
,
A.
,
Fischer
,
P.
,
Kuhl
,
E.
, and
Steinmann
,
P.
,
2010
, “
Natural Element Analysis of the Cahn-Hilliard Phase Field Model
,”
Comput. Mech.
,
46
(
3
), pp.
471
493
. 10.1007/s00466-010-0490-4
38.
Verhoosel
,
C. V.
, and
de Borst
,
R.
,
2013
, “
A Phase-Field Model for Cohesive Fracture
,”
Int. J. Numer. Methods Eng.
,
96
(
1
), pp.
43
62
. 10.1002/nme.4553
39.
Vignollet
,
J.
,
May
,
S.
,
de Borst
,
R.
, and
Verhoosel
,
C. V.
,
2014
, “
Phase Field Models for Brittle and Cohesive Fracture
,”
Meccanica
,
49
(
11
), pp.
2587
2601
. 10.1007/s11012-013-9862-0
40.
Alessi
,
R.
,
Marigo
,
J. J.
, and
Vidoli
,
S.
,
2014
, “
Gradient Damage Models Coupled With Plasticity and Nucleation of Cohesive Cracks
,”
Arch. Ration. Mech. Anal.
,
214
(
2
), pp.
575
615
. 10.1007/s00205-014-0763-8
41.
Geelen
,
R. J. M.
,
Liu
,
Y.
,
Hu
,
T.
,
Tupek
,
M. R.
, and
Dolbow
,
J. E.
,
2019
, “
A Phase-Field Formulation for Dynamic Cohesive Fracture
,”
Mech. Mater.
,
348
, pp.
680
711
.
42.
Hansen-Dörr
,
A. C.
,
De Borst
,
R.
,
Hennig
,
P.
, and
Kästner
,
M.
,
2019
, “
Phase-Field Modelling of Interface Failure in Brittle Materials
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
25
42
. 10.1016/j.cma.2018.11.020
43.
Paggi
,
M.
, and
Reinoso
,
J.
,
2017
, “
Revisiting the Problem of a Crack Impinging on An Interface: A Modeling Framework for the Interaction Between the Phase Field Approach for Brittle Fracture and the Interface Cohesive Zone Model
,”
Comput. Methods Appl. Mech. Eng.
,
321
, pp.
145
172
. 10.1016/j.cma.2017.04.004
44.
Zhang
,
P.
,
Hu
,
X.
,
Yang
,
S.
, and
Yao
,
W.
,
2019
, “
Modelling Progressive Failure in Multi-Phase Materials Using a Phase Field Method
,”
Eng. Fract. Mech.
,
209
, pp.
105
124
. 10.1016/j.engfracmech.2019.01.021
45.
Reinoso
,
J.
,
Arteiro
,
A.
,
Paggi
,
M.
, and
Camanho
,
P. P.
,
2017
, “
Strength Prediction of Notched Thin Ply Laminates Using Finite Fracture Mechanics and the Phase Field Approach
,”
Compos. Sci. Technol.
,
150
, pp.
205
216
. 10.1016/j.compscitech.2017.07.020
46.
Bleyer
,
J.
, and
Alessi
,
R.
,
2018
, “
Phase-Field Modeling of Anisotropic Brittle Fracture Including Several Damage Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
336
, pp.
213
236
. 10.1016/j.cma.2018.03.012
47.
Dhas
,
B.
,
Masiur Rahaman
,
Md.
,
Akella
,
K.
,
Roy
,
D.
, and
Reddy
,
J. N.
,
2017
, “
A Phase Field Damage Model for Orthotropic Materials and Delamination in Composites
,”
ASME J. Appl. Mech.
,
85
(
1
), pp.
1
11
.
48.
Sargado
,
J. M.
,
Keilegavlen
,
E.
,
Berre
,
I.
, and
Nordbotten
,
J. M.
,
2018
, “
High-Accuracy Phase-Field Models for Brittle Fracture Based on a New Family of Degradation Functions
,”
J. Mech. Phys. Solids
,
111
, pp.
458
489
. 10.1016/j.jmps.2017.10.015
49.
Amiri
,
F.
,
Millán
,
D.
,
Shen
,
Y.
,
Rabczuk
,
T.
, and
Arroyo
,
M.
,
2014
, “
Phase Field Modelling of Fracture in Linear Thin Shells
,”
Theor. Appl. Fract. Mec.
,
69
, pp.
102
109
. 10.1016/j.tafmec.2013.12.002
50.
Kiendl
,
J.
,
Ambati
,
M.
,
De Lorenzis
,
L.
,
Gomez
,
H.
, and
Reali
,
A.
,
2016
, “
Phase-Field Description of Brittle Fracture in Plates and Shells
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
374
394
. 10.1016/j.cma.2016.09.011
51.
Areias
,
P.
,
Rabczuk
,
T.
, and
Msekh
,
M. A.
,
2016
, “
Phase-Field Analysis of Finite Strain Plates and Shells Including Element Subdivision
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
322
350
. 10.1016/j.cma.2016.01.020
52.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Plates
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
745
752
. 10.1115/1.3167719
53.
Ambati
,
M.
,
Gerasimov
,
T.
, and
De Lorenzis
,
L.
,
2015
, “
A Review on Phase-Field Models of Brittle Fracture and a New Fast Hybrid Formulation
,”
Comput. Mech.
,
55
(
2
), pp.
383
405
. 10.1007/s00466-014-1109-y
54.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45-48
), pp.
2765
2778
. 10.1016/j.cma.2010.04.011
55.
Raghu
,
P.
,
Rajagopal
,
A.
, and
Reddy
,
J. N.
,
2018
, “
Nonlocal Nonlinear Finite Element Analysis of Composite Plates Using TSDT
,”
Compos. Struct.
,
185
, pp.
38
50
. 10.1016/j.compstruct.2017.10.075
56.
Riks
,
E.
,
1979
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
. 10.1016/0020-7683(79)90081-7
57.
Crisfield
,
M. A.
,
1981
, “
A Fast Incremental/Iterative Solution Procedure That Handles Snap-Through
,”
Comput. Struct.
,
13
, pp.
55
62
. 10.1016/0045-7949(81)90108-5
You do not currently have access to this content.