Abstract

Comparing to linear vibration absorbers, nonlinear energy sinks (NESs) have attracted worldwide attention for their intrinsic characteristics of targeted energy transfer or energy pumping in a relatively wide frequency range. Unfortunately, they are highly dependent on the vibration amplitude to be attenuated and will play its role only if the external load exceeds a specific threshold value. Different from the passive bistable NES, a novel piezoelectric nonlinear energy sink (PNES) is designed by introducing in-phase actuation to compensate or enhance the external vibration loads, thus triggering the NES operating in high attenuation efficiency. The nonlinear mathematic model of the PNES is established for investigating the dynamic response and determining the threshold compensation strategy. And the results show that the maximum attenuation efficiency can be improved by 58.16% compared to the traditional passive NES. Also, the amplitude-dependent coefficient (ADC) can be significantly reduced to 0.33 from 1.0, which means that the PNES can effectively mitigate vibrations even when the excitation amplitude is 67% smaller than the original threshold value. Finally, the feasibility of the in-phase compensation method is experimentally validated, which can further expand the application range of NES.

References

1.
Gendelman
,
O. V.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M’Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
. 10.1115/1.1345524
2.
Vakakis
,
A. F.
, and
Gendelman
,
O. V.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators—Part II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
. 10.1115/1.1345525
3.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2007
, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
325
331
. 10.1115/1.2198546
4.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
Mcfarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, Vols.
I and II
,
Springer
,
Dordrecht
.
5.
Kerschen
,
G.
,
McFarland
,
D. M.
,
Kowtko
,
J. J.
,
Lee
,
Y. S.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2007
, “
Experimental Demonstration of Transient Resonance Capture in a System of Two Coupled Oscillators With Essential Stiffness Nonlinearity
,”
J. Sound Vib.
,
299
(
4–5
), pp.
822
838
. 10.1016/j.jsv.2006.07.029
6.
Gendelman
,
O. V.
,
Sapsis
,
T.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Enhanced Passive Targeted Energy Transfer in Strongly Nonlinear Mechanical Oscillators
,”
J. Sound Vib.
,
330
(
1
), pp.
1
8
. 10.1016/j.jsv.2010.08.014
7.
Gendelman
,
O. V.
,
Sigalov
,
G.
,
Manevitch
,
L. I.
,
Mane
,
M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Dynamics of an Eccentric Rotational Nonlinear Energy Sink
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011012
. 10.1115/1.4005402
8.
Lamarque
,
C.-H.
,
Gendelman
,
O. V.
,
Ture Savadkoohi
,
A.
, and
Etcheverria
,
E.
,
2011
, “
Targeted Energy Transfer in Mechanical Systems by Means of Non-Smooth Nonlinear Energy Sink
,”
Acta Mech.
,
221
(
1–2
), pp.
175
200
. 10.1007/s00707-011-0492-0
9.
Bellet
,
R.
,
Cochelin
,
B.
,
Côte
,
R.
, and
Mattei
,
P.-O.
,
2012
, “
Enhancing the Dynamic Range of Targeted Energy Transfer in Acoustics Using Several Nonlinear Membrane Absorbers
,”
J. Sound Vib.
,
331
(
26
), pp.
5657
5668
. 10.1016/j.jsv.2012.07.013
10.
Lee
,
Y. S.
,
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2009
, “
Periodic Orbits, Damped Transitions and Targeted Energy Transfers in Oscillators With Vibro-Impact Attachments
,”
Phys. D
,
238
(
18
), pp.
1868
1896
. 10.1016/j.physd.2009.06.013
11.
Manevitch
,
L. I.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2013
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
. 10.1115/1.4025150
12.
Ture Savadkoohi
,
A. T.
,
Manevitch
,
L. I.
, and
Lamarque
,
C.-H.
,
2011
, “
Analysis of the Transient Behavior in a Two Dof Nonlinear System
,”
Chaos Soliton Fract.
,
44
(
6
), pp.
450
463
. 10.1016/j.chaos.2011.03.007
13.
Al-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2015
, “
Shock Mitigation by Means of Low- to High-Frequency Nonlinear Targeted Energy Transfers in a Large-Scale Structure
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021006
. 10.1115/1.4030540
14.
Fang
,
X.
,
Wen
,
J.
,
Yin
,
J.
, and
Yu
,
D.
,
2016
, “
Highly Efficient Continuous Bistable Nonlinear Energy Sink Composed of a Cantilever Beam With Partial Constrained Layer Damping
,”
Nonlinear Dyn.
,
87
(
4
), pp.
2677
2695
. 10.1007/s11071-016-3220-4
15.
Kani
,
M.
,
Khadem
,
S. E.
,
Pashaei
,
M. H.
, and
Dardel
,
M.
,
2015
, “
Vibration Control of a Nonlinear Beam With a Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
1
22
. 10.1007/s11071-015-2304-x
16.
Qiu
,
D.
,
Li
,
T.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2018
, “
Efficient Targeted Energy Transfer of Bistable Nonlinear Energy Sink: Application to Optimal Design
,”
Nonlinear Dyn.
,
92
(
2
), pp.
443
461
. 10.1007/s11071-018-4067-7
17.
Nguyen
,
T. A.
, and
Pernot
,
S.
,
2012
, “
Design Criteria for Optimally Tuned Nonlinear Energy Sinks—Part 1: Transient Regime
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
1
19
. 10.1007/s11071-011-0242-9
18.
AL-Shudeifat
,
M. A.
,
2014
, “
Highly Efficient Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1905
1920
. 10.1007/s11071-014-1256-x
19.
Mariani
,
R.
,
Bellizzi
,
S.
,
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P.-O.
,
2011
, “
Toward an Adjustable Nonlinear Low Frequency Acoustic Absorber
,”
J. Sound Vib.
,
330
(
22
), pp.
5245
5258
. 10.1016/j.jsv.2011.03.034
20.
Shao
,
J.
, and
Cochelin
,
B.
,
2014
, “
Theoretical and Numerical Study of Targeted Energy Transfer Inside an Acoustic Cavity by a Non-Linear Membrane Absorber
,”
Int. J. Nonlinear Mech.
,
64
, pp.
85
92
. 10.1016/j.ijnonlinmec.2014.04.008
21.
Al-Shudeifat
,
M. A.
,
Wierschem
,
N.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
,
2013
, “
Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Non-Linear Energy Sink for Shock Mitigation
,”
Int. J. Nonlinear Mech.
,
52
, pp.
96
109
. 10.1016/j.ijnonlinmec.2013.02.004
22.
Li
,
W.
,
Wierschem
,
N. E.
,
Li
,
X.
, and
Yang
,
T.
,
2018
, “
On the Energy Transfer Mechanism of the Single-Sided Vibro-Impact Nonlinear Energy Sink
,”
J. Sound Vib.
,
437
, pp.
166
179
. 10.1016/j.jsv.2018.08.057
23.
Li
,
T.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2016
, “
On the Dynamics Around Targeted Energy Transfer for Vibro-Impact Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
87
(
3
), pp.
1453
1466
. 10.1007/s11071-016-3127-0
24.
Mattei
,
P.-O.
,
Ponçot
,
R.
,
Pachebat
,
M.
, and
Côte
,
R.
,
2016
, “
Nonlinear Targeted Energy Transfer of Two Coupled Cantilever Beams Coupled to a Bistable Light Attachment
,”
J. Sound Vib.
,
373
, pp.
29
51
. 10.1016/j.jsv.2016.03.008
25.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
A Bifurcation-Based Coupled Linear-Bistable System for Microscale Mass Sensing
,”
J. Sound Vib.
,
333
(
8
), pp.
2241
2252
. 10.1016/j.jsv.2013.12.017
26.
Silva
,
T. M. P.
,
Clementino
,
M. A.
,
De Marqui
,
C.
, and
Erturk
,
A.
,
2018
, “
An Experimentally Validated Piezoelectric Nonlinear Energy Sink for Wideband Vibration Attenuation
,”
J. Sound Vib.
,
437
, pp.
68
78
. 10.1016/j.jsv.2018.08.038
27.
Shen
,
Z. Y.
,
Shih
,
W. Y.
, and
Shih
,
W. H.
,
2007
, “
Flexural Vibrations and Resonance of Piezoelectric Cantilevers With a Nonpiezoelectric Extension
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
10
), pp.
2001
2010
. 10.1109/TUFFC.2007.494
28.
Gao
,
R.
,
Huang
,
Y.
,
Wen
,
X.
,
Zhao
,
J.
, and
Liu
,
S.
,
2017
, “
Method to Further Improve Sensitivity for High-Order Vibration Mode Mass Sensors With Stepped Cantilevers
,”
IEEE Sens. J.
,
17
(
14
), pp.
4405
4411
. 10.1109/JSEN.2017.2712629
29.
Wang
,
Q. M.
, and
Cross
,
L. E.
,
1998
, “
Performance Analysis of Piezoelectric Cantilever Bending Actuators
,”
Ferroelectrics
,
215
(
1–4
), pp.
187
213
. 10.1080/00150199808229562
30.
Nayfeh
,
A. H.
, and
Emam
,
S. A.
,
2008
, “
Exact Solution and Stability of Postbuckling Configurations of Beams
,”
Nonlinear Dyn.
,
54
(
4
), pp.
395
408
. 10.1007/s11071-008-9338-2
31.
Nayfeh
,
A. H.
,
Kreider
,
W.
, and
Anderson
,
T. J.
,
1995
, “
Investigation of Natural Frequencies and Mode Shapes of Buckled Beams
,”
AIAA J.
,
33
(
6
), pp.
1121
1126
. 10.2514/3.12669
32.
Jiang
,
X.
,
Mcfarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2003
, “
Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,”
Nonlinear Dyn.
,
33
(
1
), pp.
87
102
. 10.1023/A:1025599211712
33.
Nelson
,
D.
,
Ibrahim
,
A.
, and
Towfighian
,
S.
,
2019
, “
Dynamics of a Threshold Shock Sensor: Combining Bi-Stability and Triboelectricity
,”
Sens. Actuators A
,
285
, pp.
666
675
. 10.1016/j.sna.2018.11.026
34.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Vibration Isolation Characteristics of a Nonlinear Isolator Using Euler Buckled Beam as Negative Stiffness Corrector: A Theoretical and Experimental Study
,”
J. Sound Vib.
,
333
(
4
), pp.
1132
1148
. 10.1016/j.jsv.2013.10.026
You do not currently have access to this content.