Abstract

The simplified governing equations of applied mechanics play a pivotal role and were derived based on ingenious assumptions or hypotheses regarding the displacement fields for specific problems. In this paper, we introduce a data-driven method by the name AI-Timoshenko in honor of Timoshenko, father of applied solid mechanics, to automatically discover simplified governing equations for applied mechanics problems directly from discrete data simulated by the three-dimensional (3D) finite element method. The simplified governing equations are in variational form, which is compact and advantageous for data-driven discovery. AI-Timoshenko liberates applied mechanicians from burdensome labor, including assumptions, derivation, and trial and error. The simplified governing equations for Euler–Bernoulli and Timoshenko beam theories are successfully rediscovered using the present AI-Timoshenko method, which shows that this method is capable of discovering simplified governing equations for applied mechanics problems.

References

1.
Mach
,
E.
, and
McCormack
,
T. J.
,
2013
,
The Science of Mechanics: A Critical and Historical Account of Its Development
,
Cambridge University Press
,
Cambridge
.
2.
Newton
,
I.
,
2016
,
The Principia: The Authoritative Translation and Guide
,
University of California Press
,
Berkeley, CA
.
3.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
4.
Gurtin
,
M.
,
Fried
,
E.
, and
Anand
,
L.
,
2010
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
,
Cambridge
.
5.
LeVeque
,
R. J.
,
2007
,
Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
6.
Reddy
,
J. N.
,
2005
,
An Introduction to the Finite Element Method
, 3rd ed.,
McGraw-Hill Education
,
New York
.
7.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
, 7th ed.,
Elsevier Science
,
New York
.
8.
Timoshenko
,
S.
,
1983
,
History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures
,
Dover Publications
,
New York
.
9.
Lebedev
,
L. P.
, and
Cloud
,
M. J.
,
2015
,
Approximating Perfection: A Mathematician’s Journey Into the World of Mechanics
,
Princeton University Press
,
Princeton, NJ
.
10.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2008
,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
New York
.
11.
Han
,
S. M.
,
Benaroya
,
H.
, and
Wei
,
T.
,
1999
, “
Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,”
J. Sound Vib.
,
225
(
5
), pp.
935
988
.
12.
Timoshenko
,
S. P.
,
1921
, “
LXVI. On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
,
41
(
245
), pp.
744
746
.
13.
Love
,
A. E. H.
,
1888
, “
I. The Small Free Vibrations and Deformation of a Thin Elastic Shell
,”
Proc. R. Soc. London
,
43
(
258–265
), pp.
352
353
.
14.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
,
18
(
1
), pp.
31
38
.
15.
Hey
,
T.
,
Tansley
,
S.
, and
Tolle
,
K.
,
2009
,
The Fourth Paradigm: Data-Intensive Scientific Discovery
,
Microsoft Research, Redmond, WA
.
16.
Long
,
Z.
,
Lu
,
Y.
,
Ma
,
X.
, and
Dong
,
B.
,
2018
, “
PDE-Net: Learning PDEs from Data
,”
Proceedings of the 35th International Conference on Machine Learning
,
Stockholm, Sweden
.
17.
Iten
,
R.
,
Metger
,
T.
,
Wilming
,
H.
,
del Rio
,
L.
, and
Renner
,
R.
,
2020
, “
Discovering Physical Concepts With Neural Networks
,”
Phys. Rev. Lett.
,
124
(
1
), p.
10508
.
18.
Bongard
,
J.
, and
Lipson
,
H.
,
2007
, “
Automated Reverse Engineering of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
24
), pp.
9943
9948
.
19.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.
20.
Reinbold
,
P. A. K.
,
Gurevich
,
D. R.
, and
Grigoriev
,
R. O.
,
2020
, “
Using Noisy or Incomplete Data to Discover Models of Spatiotemporal Dynamics
,”
Phys. Rev. E
,
101
(
1
), p.
010203
.
21.
Udrescu
,
S. M.
, and
Tegmark
,
M.
,
2020
, “
AI Feynman: A Physics-Inspired Method for Symbolic Regression
,”
Sci. Adv.
,
6
(
16
), p.
eaay2631
.
22.
Udrescu
,
S. M.
,
Tan
,
A.
,
Feng
,
J.
,
Neto
,
O.
,
Wu
,
T.
, and
Tegmark
,
M.
,
2020
, “
AI Feynman 2.0: Pareto-Optimal Symbolic Regression Exploiting Graph Modularity
,”
Advances in Neural Information Processing Systems
, vol.
33
,
Vancouver, BC, Canada
.
23.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
15
), pp.
3932
3937
.
24.
Rudy
,
S. H.
,
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2017
, “
Data-Driven Discovery of Partial Differential Equations
,”
Sci. Adv.
,
3
(
4
), p.
e1602614
.
25.
Huang
,
Z.
,
Tian
,
Y.
,
Li
,
C.
,
Lin
,
G.
,
Wu
,
L.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2020
, “
Data-Driven Automated Discovery of Variational Laws Hidden in Physical Systems
,”
J. Mech. Phys. Solids
,
137
, p.
103871
.
26.
Goldstein
,
H.
,
2002
,
Classical Mechanics
, 3rd ed.,
Pearson Education
,
Delhi
.
27.
Traill-Nash
,
R. W.
, and
Collar
,
A. R.
,
1953
, “
The Effects of Shear Flexibility and Rotatory Inertia on the Bending Vibrations of Beams
,”
Q. J. Mech. Appl. Math.
,
6
(
2
), pp.
186
222
.
28.
Gołaś
,
J.
,
2007
, “
Influence of Transverse Shearing and Rotary Inertia on Vibrations of a Fibrous Composite Beams
,”
Eng. Trans.
,
55
(
1
), pp.
29
41
.
29.
Gu
,
J.
,
2014
, “
Free Vibration of Castellated Beams With Web Shear and Rotary Inertia Effects
,”
Int. J. Struct. Stab. Dyn.
,
14
(
6
), p.
1450011
.
30.
Reddy
,
J. N.
, and
Mahaffey
,
P.
,
2013
, “
Generalized Beam Theories Accounting for von Kármán Nonlinear Strains With Application to Buckling
,”
J. Coupled Syst. Multiscale Dyn.
,
1
(
1
), pp.
120
134
.
31.
Emam
,
S. A.
, and
Nayfeh
,
A. H.
,
2009
, “
Postbuckling and Free Vibrations of Composite Beams
,”
Compos. Struct.
,
88
(
4
), pp.
636
642
.
32.
Reddy
,
J. N.
, and
Singh
,
I. R.
,
1981
, “
Large Deflections and Large-Amplitude Free Vibrations of Straight and Curved Beams
,”
Int. J. Numer. Methods Eng.
,
17
(
6
), pp.
829
852
.
33.
Nishawala
,
V.
,
2011
, “
A Study of Large Deflection of Beams and Plates
,”
M.S. thesis
,
Rutgers, The State University of New Jersey
.
You do not currently have access to this content.