Abstract

The ability of mechanosensing is essential for intelligent systems. Here we show by molecular dynamics (MD) simulations that a graphene flake on a bent beam exhibits amazing mechanosensing behavior, termed flexotaxis. The graphene flake can perceive the beam bending gradient which indeed leads to a gradient of atomic density that produces a driving force on the flake toward the direction of increasing density. An analytical model is developed to further confirm the mechanism, and the simulation results can be well reproduced by the model. Our findings may have general implications not only for the potential applications of graphene as sensing elements in nanoscale intelligent devices but also for the exploration of mechanosensing capability of other two-dimensional materials.

References

1.
Paulovich
,
F. V.
,
De Oliveira
,
M. C. F.
, and
Oliveira
,
O. N.
,
2018
, “
A Future With Ubiquitous Sensing and Intelligent Systems
,”
ACS Sensors
,
3
(
8
), pp.
1433
1438
. 10.1021/acssensors.8b00276
2.
Fletcher
,
M.
,
Biglarbegian
,
M.
, and
Neethirajan
,
S.
,
2013
, “
Intelligent System Design for Bionanorobots in Drug Delivery
,”
Cancer Nanotechnol.
,
4
(
4
), pp.
117
125
. 10.1007/s12645-013-0044-5
3.
Luo
,
M.
,
Zhang
,
Z.
, and
Yakobson
,
B. I.
,
2013
, “
Tunable Gigahertz Oscillators of Gliding Incommensurate Bilayer Graphene Sheets
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040906
. 10.1115/1.4024170
4.
Roukes
,
M.
,
2001
, “
Nanoelectromechanical Systems Face the Future
,”
Physics World
,
14
(
2
), pp.
25
32
. 10.1088/2058-7058/14/2/29
5.
Abgrall
,
P.
, and
Nguyen
,
N. T.
,
2008
, “
Nanofluidic Devices and Their Applications
,”
Anal. Chem.
,
80
(
7
), pp.
2326
2341
. 10.1021/ac702296u
6.
Cavallaro
,
M.
,
Botto
,
L.
,
Lewandowski
,
E. P.
,
Wang
,
M.
, and
Stebe
,
K. J.
,
2011
, “
Curvature-Driven Capillary Migration and Assembly of Rod-Like Particles
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
52
), pp.
20923
20928
. 10.1073/pnas.1116344108
7.
Ma
,
M.
,
Tocci
,
G.
,
Michaelides
,
A.
, and
Aeppli
,
G.
,
2016
, “
Fast Diffusion of Water Nanodroplets on Graphene
,”
Nat. Mater.
,
15
(
1
), pp.
66
71
. 10.1038/nmat4449
8.
Fan
,
L.-S.
,
Tai
,
Y.-C.
, and
Muller
,
R. S.
,
1988
, “
Integrated Movable Micromechanical Structures for Sensors and Actuators
,”
IEEE Trans. Electron Devices
,
35
(
6
), pp.
724
730
. 10.1109/16.2523
9.
Lv
,
C.
,
Chen
,
C.
,
Chuang
,
Y.-C.
,
Tseng
,
F.-G.
,
Yin
,
Y.
,
Grey
,
F.
, and
Zheng
,
Q.
,
2014
, “
Substrate Curvature Gradient Drives Rapid Droplet Motion
,”
Phys. Rev. Lett.
,
113
(
2
), p.
026101
. 10.1103/PhysRevLett.113.026101
10.
Han
,
G.
,
Chang
,
T.
, and
Jiang
,
J.
,
2019
, “
Directional Motion of a Graphene Sheet on Graded MoS2–WSe2 Lateral Heterostructures
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061009
. 10.1115/1.4043142
11.
Li
,
J.
,
Zhang
,
H.
,
Guo
,
Z.
,
Chang
,
T.
, and
Gao
,
H.
,
2015
, “
Edge Forces in Contacting Graphene Layers
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101011
. 10.1115/1.4031085
12.
Zhang
,
B.
,
Liao
,
X.
,
Chen
,
Y.
,
Xiao
,
H.
,
Ni
,
Y.
, and
Chen
,
X.
,
2019
, “
Rapid Programmable Nanodroplet Motion on a Strain-Gradient Surface
,”
Langmuir
,
35
(
7
), pp.
2865
2870
. 10.1021/acs.langmuir.8b03774
13.
Liang
,
J.
,
Huang
,
L.
,
Li
,
N.
,
Huang
,
Y.
,
Wu
,
Y.
,
Fang
,
S.
,
Oh
,
J.
,
Kozlov
,
M.
,
Ma
,
Y.
,
Li
,
F.
,
Baughman
,
R.
, and
Chen
,
Y.
,
2012
, “
Electromechanical Actuator With Controllable Motion, Fast Response Rate, and High-Frequency Resonance Based on Graphene and Polydiacetylene
,”
ACS Nano
,
6
(
5
), pp.
4508
4519
. 10.1021/nn3006812
14.
Will
,
M.
,
Hamer
,
M.
,
Müller
,
M.
,
Noury
,
A.
,
Weber
,
P.
,
Bachtold
,
A.
,
Gorbachev
,
R. V.
,
Stampfer
,
C.
, and
Güttinger
,
J.
,
2017
, “
High Quality Factor Graphene-Based Two-Dimensional Heterostructure Mechanical Resonator
,”
Nano Lett.
,
17
(
10
), pp.
5950
5955
. 10.1021/acs.nanolett.7b01845
15.
Weber
,
P.
,
Güttinger
,
J.
,
Tsioutsios
,
I.
,
Chang
,
D. E.
, and
Bachtold
,
A.
,
2014
, “
Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities
,”
Nano Lett.
,
14
(
5
), pp.
2854
2860
. 10.1021/nl500879k
16.
Singh
,
R.
,
Nicholl
,
R. J. T.
,
Bolotin
,
K. I.
, and
Ghosh
,
S.
,
2018
, “
Motion Transduction With Thermo-Mechanically Squeezed Graphene Resonator Modes
,”
Nano Lett.
,
18
(
11
), pp.
6719
6724
. 10.1021/acs.nanolett.8b02293
17.
Lemme
,
M. C.
,
Echtermeyer
,
T. J.
,
Baus
,
M.
, and
Kurz
,
H.
,
2007
, “
A Graphene Field-Effect Device
,”
IEEE Electron Device Lett.
,
28
(
4
), pp.
282
284
. 10.1109/LED.2007.891668
18.
Wei
,
D.
,
Liu
,
Y.
,
Zhang
,
H.
,
Huang
,
L.
,
Wu
,
B.
,
Chen
,
J.
, and
Yu
,
G.
,
2009
, “
Scalable Synthesis of Few-Layer Graphene Ribbons With Controlled Morphologies by a Template Method and Their Applications in Nanoelectromechanical Switches
,”
J. Am. Chem. Soc.
,
131
(
31
), pp.
11147
11154
. 10.1021/ja903092k
19.
Becton
,
M.
, and
Wang
,
X.
,
2014
, “
Thermal Gradients on Graphene to Drive Nanoflake Motion
,”
J. Chem. Theory Comput.
,
10
(
2
), pp.
722
730
. 10.1021/ct400963d
20.
Guo
,
Y.
, and
Guo
,
W.
,
2013
, “
Soliton-Like Thermophoresis of Graphene Wrinkles
,”
Nanoscale
,
5
(
1
), pp.
318
323
. 10.1039/C2NR32580B
21.
Cole
,
R. M.
,
Brawley
,
G. A.
,
Adiga
,
V. P.
,
De Alba
,
R.
,
Parpia
,
J. M.
,
Ilic
,
B.
,
Craighead
,
H. G.
, and
Bowen
,
W. P.
,
2015
, “
Evanescent-Field Optical Readout of Graphene Mechanical Motion at Room Temperature
,”
Phys. Rev. Appl.
,
3
(
2
), p.
024004
. 10.1103/PhysRevApplied.3.024004
22.
Hendry
,
E.
,
Hale
,
P. J.
,
Moger
,
J.
,
Savchenko
,
A. K.
, and
Mikhailov
,
S. A.
,
2010
, “
Coherent Nonlinear Optical Response of Graphene
,”
Phys. Rev. Lett.
,
105
(
9
), pp.
212
217
. 10.1103/PhysRevLett.105.097401
23.
Ferreira
,
A.
,
Viana-Gomes
,
J.
,
Bludov
,
Y. V.
,
Pereira
,
V.
,
Peres
,
N. M. R.
, and
Castro Neto
,
A. H.
,
2011
, “
Faraday Effect in Graphene Enclosed in an Optical Cavity and the Equation of Motion Method for the Study of Magneto-Optical Transport in Solids
,”
Phys. Rev. B
,
84
(
23
), pp.
277
284
. 10.1103/physrevb.84.235410
24.
Pisana
,
S.
,
Braganca
,
P. M.
,
Marinero
,
E. E.
, and
Gurney
,
B. A.
,
2010
, “
Graphene Magnetic Field Sensors
,”
IEEE Trans. Magn.
,
46
(
6
), pp.
1910
1913
. 10.1109/TMAG.2010.2041048
25.
Chang
,
T.
,
Zhang
,
H.
,
Guo
,
Z.
,
Guo
,
X.
, and
Gao
,
H.
,
2015
, “
Nanoscale Directional Motion Towards Regions of Stiffness
,”
Phys. Rev. Lett.
,
114
(
1
), p.
015504
. 10.1103/PhysRevLett.114.015504
26.
Wang
,
C.
, and
Chen
,
S.
,
2015
, “
Motion Driven by Strain Gradient Fields
,”
Sci. Rep.
,
5
(
1
), p.
13675
. 10.1038/srep13675
27.
Ouyang
,
W.
,
Mandelli
,
D.
,
Urbakh
,
M.
, and
Hod
,
O.
,
2018
, “
Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials
,”
Nano Lett.
,
18
(
9
), pp.
6009
6016
. 10.1021/acs.nanolett.8b02848
28.
Dai
,
C.
,
Guo
,
Z.
,
Zhang
,
H.
, and
Chang
,
T.
,
2016
, “
A Nanoscale Linear-to-Linear Motion Converter of Graphene
,”
Nanoscale
,
8
(
30
), pp.
14406
14410
. 10.1039/C6NR01565D
29.
Zhou
,
X.
,
Wadley
,
H.
,
Johnson
,
R. A.
,
Larson
,
D.
,
Tabat
,
N.
,
Cerezo
,
A.
,
Petford-Long
,
A.
,
Smith
,
G.
,
Clifton
,
P.
, and
Martens
,
R.
,
2001
, “
Atomic Scale Structure of Sputtered Metal Multilayers
,”
Acta Mater.
,
49
(
19
), pp.
4005
4015
. 10.1016/S1359-6454(01)00287-7
30.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
(
4
), pp.
783
802
. 10.1088/0953-8984/14/4/312
31.
Guo
,
Z.
,
Chang
,
T.
,
Guo
,
X.
, and
Gao
,
H.
,
2017
, “
Gas-Like Adhesion of Two-Dimensional Materials Onto Solid Surfaces
,”
Sci. Rep.
,
7
(
1
), p.
159
. 10.1038/s41598-017-00184-x
32.
Zheng
,
Q.
, and
Jiang
,
Q.
,
2002
, “
Multiwalled Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
,
88
(
4
), p.
045503
. 10.1103/PhysRevLett.88.045503
33.
Leng
,
J.
,
Hu
,
Y.
, and
Chang
,
T.
,
2020
, “
Nanoscale Directional Motion by Angustotaxis
,”
Nanoscale
,
12
(
9
), pp.
5308
5312
. 10.1039/C9NR10108J
34.
Timoshenko
,
S. P.
,
Gere
,
J. M.
, and
Prager
,
W.
,
1962
, “
Theory of Elastic Stability, Second Edition
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
220
221
. 10.1115/1.3636481
35.
Zhang
,
H.
, and
Chang
,
T.
,
2018
, “
Edge Orientation Dependent Nanoscale Friction
,”
Nanoscale
,
10
(
5
), pp.
2447
2453
. 10.1039/C7NR07839K
You do not currently have access to this content.