Abstract

In this study, polymer-bonded sugar (PBS) is used as a substitute material for polymer-bonded explosive (PBX), and the shear failure process of PBS under compressive loading. First, the shear failure process of PBS was analyzed by a series of experiments, and it was found that the shear band appearing on the surface of the specimen was not symmetrical. Further theory analysis showed that it was triggered by the evolution of asymmetric damage caused by internal defects in the material. In addition, through investigating the distribution of experimental scatters, we found that the material undergoes a relatively long period of internal microstructure adjustment before shear failure occurs, this adjustment will undoubtedly affect the evolution of the shear band. More importantly, a data density method was used to quantify the adjustment process. Finally, by using finite element simulation, the effects of matrix–particle interface strength on the mechanical response or damage evolution of the PBS were thoroughly examined. This research has reference significance for understanding the damage evolution process of high particle content composite materials.

References

1.
Benson
,
D. J.
, and
Conley
,
P.
,
1999
, “
Eulerian Finite-Element Simulations of Experimentally Acquired hmx Microstructures
,”
Modell. Simul. Mater. Sci. Eng.
,
7
(
3
), pp.
333
354
. 10.1088/0965-0393/7/3/304
2.
Kang
,
G.
,
Ning
,
Y. J.
, and
Chen
,
P. W.
,
2020
, “
Meso-scale Failure Simulation of Polymer Bonded Explosive With Initial Defects by the Numerical Manifold Method
,”
Comput. Mater. Sci.
,
173
(
15
), p.
109425
. 10.1016/j.commatsci.2019.109425
3.
Barua
,
A.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2012
, “
Energy Localization in HMX-Estane Polymer-Bonded Explosives During Impact Loading
,”
J. Appl. Phys.
,
111
(
5
), p.
054902
. 10.1063/1.3688350
4.
Yang
,
K.
,
Wu
,
Y.
, and
Huang
,
F.
,
2019
, “
Microcrack and Microvoid Dominated Damage Behaviors for Polymer Bonded Explosives Under Different Dynamic Loading Conditions
,”
Mech. Mater.
,
137
, p.
103130
. 10.1016/j.mechmat.2019.103130
5.
Zhao
,
Y. H.
, and
Weng
,
G. J.
,
2002
, “
The Effect of Debonding Angle on the Reduction of Effective Moduli of Particle and Fiber-Reinforced Composites
,”
ASME J. Appl. Mech.
,
69
(
3
), pp.
292
302
. 10.1115/1.1459068
6.
Malcher
,
L.
,
Pires
,
F. M. A.
, and
César de Sá
,
J. M. A.
,
2012
, “
An Assessment of Isotropic Constitutive Models for Ductile Fracture Under High and Low Stress Triaxiality
,”
Int. J. Plast.
,
30–31
, pp.
81
115
. 10.1016/j.ijplas.2011.10.005
7.
Trumel
,
H.
,
Lambert
,
P.
, and
Belmas
,
R.
,
2010
, “
Mesoscopic Investigations of the Deformation and Initiation Mechanisms of a HMX-Based Pressed Composition
,”
Proceedings of the 14th Symposium (International) on Detonation
,
Coeur d'Alene, ID
,
Apr. 11–16
.
8.
Çolak
,
O. U.
,
2004
, “
Mechanical Behavior of Polymers PBXW-128 and PBXN-110 Under Uniaxial and Multiaxial Compression at Different Strain Rates and Temperatures
,”
J. Test. Eval.
,
32
(
5
), pp.
390
395
. 10.1520/JTE12249
9.
Parab
,
N. D.
,
Roberts
,
Z. A.
,
Harr
,
M. H.
,
Mares
,
J. O.
,
Casey
,
A. D.
,
Gunduz
,
I. E.
,
Hudspeth
,
M.
,
Claus
,
B.
,
Sun
,
T.
,
Fezzaa
,
K.
,
Son
,
S. F.
, and
Chen
,
W. W.
,
2016
, “
High Speed X-ray Phase Contrast Imaging of Energetic Composites Under Dynamic Compression
,”
Appl. Phys. Lett.
,
109
, pp.
3725
3744
. 10.1063/1.4963137
10.
Chen
,
J. K.
,
Li
,
J. L.
,
Zhu
,
L. M.
,
Li
,
K. W.
,
Zhao
,
F.
, and
Bai
,
S. L.
,
2017
, “
On the Tension-Induced Microcracks' nucleation in a PBX Substitute Material Under Impact Compression Loading
,”
Int. J. Mech. Sci.
,
134
, pp.
263
272
. 10.1016/j.ijmecsci.2017.10.004
11.
Drodge
,
D. R.
, and
Williamson
,
D. M.
,
2016
, “
Understanding Damage in Polymer-Bonded Explosive Composites
,”
J. Mater. Sci.
,
51
(
2
), pp.
668
679
. 10.1007/s10853-013-7378-6
12.
Wiegand
,
D. A.
, and
Reddingius
,
B.
,
2005
, “
Mechanical Properties of Confined Explosives
,”
J. Energ. Mater.
,
23
(
2
), pp.
75
98
. 10.1080/07370650590936415
13.
Wiegand
,
D. A.
,
Reddingius
,
B.
,
Ellis
,
K.
, and
Leppard
,
C.
,
2011
, “
Pressure and Friction Dependent Mechanical Strength-Cracks and Plastic Flow
,”
Int. J. Solids Struct.
,
48
(
11–12
), pp.
1617
1629
. 10.1016/j.ijsolstr.2011.01.025
14.
Bailly
,
P.
,
Delvare
,
F.
,
Vial
,
J.
,
Hanus
,
J. L.
,
Biessy
,
M.
, and
Picart
,
D.
,
2011
, “
Dynamic Behavior of an Aggregate Material at Simultaneous High Pressure and Strain Rate: SHPB Triaxial Tests
,”
Int. J. Impact Eng.
,
38
(
2–3
), pp.
73
84
. 10.1016/j.ijimpeng.2010.10.005
15.
Asay
,
B. W.
,
2010
,
Shock Wave Science and Technology Reference Library (Volume5): Non-Shock Initiation of Explosives
,
Springer
,
Berlin
.
16.
Rae
,
P.
,
Palmer
,
S.
,
Goldrein
,
H.
,
Field
,
J.
, and
Lewis
,
A.
,
2002
, “
Quasi-static Studies of the Deformation and Failure of PBX 9501
,”
Proc. Math. Phys. Eng. Sci.
,
458
(
2025
), pp.
2227
2242
. 10.1098/rspa.2002.0967
17.
Dienes
,
J.
,
Zuo
,
Q.
, and
Kershner
,
J.
,
2006
, “
Impact Initiation of Explosives and Propellants via Statistical Crack Mechanics
,”
J. Mech. Phys. Solids
,
54
(
6
), pp.
1237
1275
. 10.1016/j.jmps.2005.12.001
18.
Chen
,
J. K.
,
Huang
,
Z. P.
, and
Zhu
,
J.
,
2007
, “
Size Effect of Particles on the Damage Dissipation in Nanocomposites
,”
Compos. Sci. Technol.
,
67
(
14
), pp.
2990
2996
. 10.1016/j.compscitech.2007.05.020
19.
Zhang
,
M. H.
,
Li
,
J. L.
,
Chen
,
J. K.
,
Li
,
K. W.
,
Zhao
,
F.
, and
Bai
,
S. L.
,
2019
, “
Study on Compression–Expansion Behaviour of PBXs Substitutive Materials
,”
Plast. Rubber Compos.
,
48
(
4
), pp.
137
148
. 10.1080/14658011.2019.1581472
20.
Tan
,
H.
,
Huang
,
Y.
,
Liu
,
C.
,
Ravichandran
,
G.
,
Inglis
,
H.
, and
Geubelle
,
P.
,
2007
, “
The Uniaxial Tension of Particulate Composite Materials With Nonlinear Interface Debonding
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1809
1822
. 10.1016/j.ijsolstr.2006.09.004
21.
Palmer
,
S. J. P.
,
Field
,
J. E.
, and
Huntley
,
J. M.
,
1993
, “
Deformation, Strengths and Strains to Failure of Polymer Bonded Explosives
,”
Proc. Math. Phys. Sci.
,
440
, pp.
399
419
.
22.
Williamson
,
D.
,
Siviour
,
C.
,
Proud
,
W.
,
Palmer
,
S.
,
Govier
,
R.
,
Ellis
,
K.
,
Blackwell
,
P.
, and
Leppard
,
C.
,
2008
, “
Temperature–Time Response of a Polymer Bonded Explosive in Compression (EDC37)
,”
J. Phys. D Appl. Phys.
,
41
(
8
), p.
085404
. 10.1088/0022-3727/41/8/085404
23.
Liu
,
Z. W.
,
Zhang
,
H. Y.
,
Xie
,
H. M.
, and
Li
,
K. X.
,
2016
, “
Shear Band Evolution in Polymer Bonded Explosives Subjected to Punch Loading
,”
Strain
,
52
(
6
), pp.
459
466
. 10.1111/str.12186
24.
Grilli
,
N.
,
Duarte
,
C.
, and
Koslowski
,
M.
,
2018
, “
Dynamic Fracture and Hot-Spot Modeling in Energetic Composites
,”
J. Appl. Phys.
,
123
(
6
), p.
065101
. 10.1063/1.5009297
25.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
J. Appl. Mech.-Trans. ASME
,
54
(
3
), pp.
525
531
. 10.1115/1.3173064
26.
Tan
,
H.
,
Liu
,
C.
,
Huang
,
Y.
, and
Geubelle
,
P. H.
,
2005
, “
The Cohesive Law for the Particle/Matrix Interfaces in High Explosives
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1892
1917
. 10.1016/j.jmps.2005.01.009
27.
Wu
,
Y.
, and
Huang
,
F.
,
2009
, “
A Micromechanical Model for Predicting Combined Damage of Particles and Interface Debonding in PBX Explosives
,”
Mech. Mater.
,
41
(
1
), pp.
27
47
. 10.1016/j.mechmat.2008.07.005
28.
Barua
,
A.
, and
Zhou
,
M.
,
2011
, “
A Lagrangian Framework for Analyzing Microstructural Level Response of Polymer-Bonded Explosives
,”
Modell. Simul. Mater. Sci. Eng.
,
19
(
5
), p.
055001
. 10.1088/0965-0393/19/5/055001
29.
Ling
,
L. J.
,
Hua
,
F.
,
Wang
,
T. D.
, and
Yun
,
L. F.
,
2012
, “
Fracture Behaviour Investigation Into a Polymer Bonded Explosive
,”
Strain
,
48
(
6
), pp.
463
473
. 10.1111/j.1475-1305.2012.00842.x
30.
Yeager
,
J. D.
,
Ramos
,
K. J.
,
Singh
,
S.
,
Rutherford
,
M. E.
,
Majewski
,
J.
, and
Hooks
,
D. E.
,
2012
, “
Nanoindentation of Explosive Polymer Composites to Simulate Deformation and Failure
,”
Mater. Sci. Technol.
,
8
(
9–10
), pp.
1147
1155
. 10.1179/1743284712Y.0000000011
31.
Chen
,
L.
,
Han
,
D.
,
Bai
,
S. L.
,
Zhao
,
F.
, and
Chen
,
J.
,
2017
, “
Compressive Behavior and Damage Evaluation of a PBX Substitute Material
,”
Mech. Adv. Mater. Struct.
,
24
(
9
),
737
744
.
32.
Chen
,
L.
,
Han
,
D.
,
Bai
,
S. L.
,
Zhao
,
F.
, and
Chen
,
J.
,
2018
, “
Study on the Relation Between Microstructural Change and Compressive Creep Stress of a PBX Substitute Material
,”
Sci. Eng. Compos. Mater.
,
25
(
4
), pp.
731
737
. 10.1515/secm-2016-0261
33.
Ravindran
,
S.
,
Tessema
,
A.
, and
Kidane
,
A.
,
2017
, “
Multiscale Damage Evolution in Polymer Bonded Sugar Under Dynamic Loading
,”
Mech. Mater.
,
114
, pp.
97
106
. 10.1016/j.mechmat.2017.07.016
34.
Chen
,
J. H.
,
Hu
,
H. J.
,
Li
,
S.
, and
Zhang
,
K. F.
,
2016
, “
Quantitative Relation Between the Relaxation Time and the Strain Rate for Polymeric Solids Under Quasi-static Conditions
,”
J. Appl. Polym. Sci.
,
133
(
42
), p.
44110
.
35.
Lepakshi
,
R.
, and
Reddy
,
B. V.
,
2020
, “
Shear Strength Parameters and Mohr-Coulomb Failure Envelopes for Cement Stabilised Rammed Earth
,”
Constr. Build. Mater.
,
249
, p.
118708
. 10.1016/j.conbuildmat.2020.118708
36.
Escartín
,
J.
,
Hirth
,
G.
, and
Evans
,
B.
,
1997
, “
Nondilatant Brittle Deformation of Serpentinites: Implications for Mohr-Coulomb Theory and the Strength of Faults
,”
J. Geophys. Res.-Solid Earth
,
102
(
B2
), pp.
2897
2913
. 10.1029/96JB02792
37.
Heidari-Rarani
,
M.
, and
Bashandeh-Khodaei-Naeini
,
K.
,
2018
, “
Micromechanics Based Damage Model for Predicting Compression Behavior of Polymer Concretes
,”
Mech. Mater.
,
117
, pp.
126
136
. 10.1016/j.mechmat.2017.11.004
38.
Peterson
,
P. D.
,
Mang
,
J. T.
,
Fletcher
,
M. A.
,
Olinger
,
B. W.
, and
Roemer
,
E. L.
,
2004
, “
Influence of Pressing Intensity on the Micro-structure of PBX 9501
,”
AIP Conf. Proc.
,
706
, pp.
796
799
. 10.1063/1.1780357
39.
Gray III
,
G. T.
,
Idar
,
D. J.
,
Blumenthal
,
W. R.
,
Cady
,
C. M.
, and
Paterson
,
P. D.
,
1998
, “
High-and Low-Strain Rate Compression Properties of Several Energetic Material Composites as a Function of Strain and Temperature
,”
Proceedings of 11th International Detonation Symposium
,
Colorado
,
Aug. 31–Sept. 4
, pp.
76
84
.
40.
Deng
,
X. L.
, and
Wang
,
B.
,
2020
, “
Peridynamic Modeling of Dynamic Damage of Polymer Bonded Explosive
,”
Comput. Mater. Sci.
,
173
(
15
), p.
109405
. 10.1016/j.commatsci.2019.109405
41.
Dandekar
,
A.
,
Roberts
,
Z.
,
Paulson
,
S.
,
Chen
,
W.
,
Son
,
S.
, and
Koslowski
,
M.
,
2019
, “
The Effect of the Particle Surface and Binder Properties on the Response of Polymer Bonded Explosives at Low Impact Velocities
,”
Comput. Mater. Sci.
,
166
, pp.
170
178
. 10.1016/j.commatsci.2019.04.033
42.
Grilli
,
N.
, and
Koslowski
,
M.
,
2018
, “
The Effect of Crystal Orientation on Shock Loading of Single Crystal Energetic Materials
,”
Comput. Mater. Sci.
,
155
, pp.
235
245
. 10.1016/j.commatsci.2018.08.059
43.
Wang
,
X.
,
Ma
,
S. P.
,
Zhao
,
Y. T.
,
Zhou
,
Z. B.
, and
Chen
,
P. W.
,
2011
, “
Observation of Damage Evolution in Polymer Bonded Explosives Using Acoustic Emission and Digital Image Correlation
,”
Polym. Test.
,
30
(
8
), pp.
861
866
. 10.1016/j.polymertesting.2011.08.006
You do not currently have access to this content.