Abstract

An indentation method to determine the properties of hyperelastic thin films is proposed, which is to use a spherical indenter to indent on the film with a small circular hole in the center. During this progress, there exists a maximum indentation load before penetration. Considering geometries of the film and the indenter, the specific form of relationship between the maximum indentation load and the elastic properties of the film is developed for neo-Hookean, Arruda-Boyce, and Ogden hyperelastic constitutive models. On the basis of this relationship, the initial shear modulus of the film can be directly obtained from single data of the maximum load, instead of recording and fitting to indentation curves. Furthermore, other properties of hyperelastic materials are explored from the perspective of the inverse problem. The experiments are performed with natural rubber, silicone rubber, and polydimethylsiloxane (PDMS) films to verify the feasibility of our method, and the optimal radius ratio between the indenter and the hole is concluded from the experimental results.

References

1.
Nathan
,
A.
,
Ahnood
,
A.
,
Cole
,
M. T.
,
Lee
,
S.
,
Suzuki
,
Y.
,
Hiralal
,
P.
,
Bonaccorso
,
F.
,
Hasan
,
T.
,
Garcia-Gancedo
,
L.
,
Dyadyusha
,
A.
, et al.
2012
, “
Flexible Electronics: The Next Ubiquitous Platform
,”
Proc. IEEE
,
100
(Special Centennial Issue), pp.
1486
1517
.
2.
Zhang
,
Z.
,
Wang
,
Y.
,
Wang
,
Q.
, and
Shang
,
L.
,
2022
, “
Smart Film Actuators for Biomedical Applications
,”
Small
, p.
2105116
.
3.
Ge
,
C.
,
Zhai
,
W.
, and
Park
,
C. B.
,
2019
, “
Preparation of Thermoplastic Polyurethane (TPU) Perforated Membrane Via CO2 Foaming and Its Particle Separation Performance
,”
Polymers
,
11
(
5
), p.
847
.
4.
Aravas
,
N.
, and
Laspidou
,
C.
,
2008
, “
On the Calculation of the Elastic Modulus of a Biofilm Streamer
,”
Biotechnol. Bioeng.
,
101
(
1
), pp.
196
200
.
5.
Watanabe
,
M.
,
2008
, “
Field-Induced Bending Deformation of Various Rubber Films
,”
Polym. Adv. Technol.
,
19
(
4
), pp.
276
280
.
6.
Selvadurai
,
A.
, and
Shi
,
M.
,
2012
, “
Fluid Pressure Loading of a Hyperelastic Membrane
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
228
239
.
7.
Larson
,
C.
,
Peele
,
B.
,
Li
,
S.
,
Robinson
,
S.
,
Totaro
,
M.
,
Beccai
,
L.
,
Mazzolai
,
B.
, and
Shepherd
,
R.
,
2016
, “
Highly Stretchable Electroluminescent Skin for Optical Signaling and Tactile Sensing
,”
Science
,
351
(
6277
), pp.
1071
1074
.
8.
Kim
,
T. K.
,
Kim
,
J. K.
, and
Jeong
,
O. C.
,
2011
, “
Measurement of Nonlinear Mechanical Properties of PDMS Elastomer
,”
Microelectron. Eng.
,
88
(
8
), pp.
1982
1985
.
9.
Liu
,
Y.
,
Wei
,
Y.
, and
Chen
,
P.
,
2019
, “
Indentation Response of Soft Viscoelastic Matter With Hard Skin
,”
Soft Matter
,
15
(
28
), pp.
5760
5769
.
10.
Zhong
,
G.-y.
,
Yan
,
W.-Q.
,
Li
,
J.
, and
Tian
,
Y.-m.
,
2019
, “
Determining Young’s Modulus of MEH-PPV Film by Fitting the Unloading Curve
,”
Microsyst. Technol.
,
25
(
4
), pp.
1467
1474
.
11.
Vella
,
D.
, and
Davidovitch
,
B.
,
2017
, “
Indentation Metrology of Clamped, Ultra-Thin Elastic Sheets
,”
Soft Matter
,
13
(
11
), pp.
2264
2278
.
12.
Zhou
,
X.
,
Wang
,
H. R.
,
Jiang
,
Z. D.
, and
Yu
,
R. X.
,
2007
, “
Extraction of Elastic Modulus and Hardness of the Soft Metallic Films on Hard Substrates by Nanoindentation
,”
Mater. Sci. Forum
,
561
, pp.
2005
2008
.
13.
Cao
,
Y.
,
Yang
,
D.
, and
Soboyejoy
,
W.
,
2005
, “
Nanoindentation Method for Determining the Initial Contact and Adhesion Characteristics of Soft Polydimethylsiloxane
,”
J. Mater. Res.
,
20
(
8
), pp.
2004
2011
.
14.
Hämäläinen
,
K. M.
,
Kontturi
,
K.
,
Auriola
,
S.
,
Murtomäki
,
L.
, and
Urtti
,
A.
,
1997
, “
Estimation of Pore Size and Pore Density of Biomembranes From Permeability Measurements of Polyethylene Glycols Using an Effusion-Like Approach
,”
J. Controlled Release
,
49
(
2–3
), pp.
97
104
.
15.
Bertrand
,
B.
,
Garduño-Juárez
,
R.
, and
Munoz-Garay
,
C.
,
2021
, “
Estimation of Pore Dimensions in Lipid Membranes Induced by Peptides and Other Biomolecules: A Review
,”
Biochim. Biophys. Acta (BBA)-Biomem.
,
1863
(
4
), p.
183551
.
16.
Jia
,
F.
, and
Amar
,
M. B.
,
2020
, “
Scaling Laws and Snap-Through Events in Indentation of Perforated Membranes
,”
J. Mech. Phys. Solids
,
135
, p.
103797
.
17.
Chen
,
Z.
,
Scheffer
,
T.
,
Seibert
,
H.
, and
Diebels
,
S.
,
2013
, “
Macroindentation of a Soft Polymer: Identification of Hyperelasticity and Validation by Uni/Biaxial Tensile Tests
,”
Mech. Mater.
,
64
, pp.
111
127
.
18.
Chandler
,
T. G.
, and
Vella
,
D.
,
2020
, “
Indentation of Suspended Two-Dimensional Solids: The Signatures of Geometrical and Material Nonlinearity
,”
J. Mech. Phys. Solids
,
144
, p.
104109
.
19.
Cheng
,
Y.-T.
, and
Cheng
,
C.-M.
,
2004
, “
Scaling, Dimensional Analysis, and Indentation Measurements
,”
Mater. Sci. Eng. R: Rep.
,
44
(
4–5
), pp.
91
149
.
20.
Cheng
,
Y.-T.
, and
Cheng
,
C.-M.
,
1998
, “
Relationships Between Hardness, Elastic Modulus, and the Work of Indentation
,”
Appl. Phys. Lett.
,
73
(
5
), pp.
614
616
.
21.
Dao
,
M.
,
Chollacoop
,
N. v.
,
Van Vliet
,
K.
,
Venkatesh
,
T.
, and
Suresh
,
S.
,
2001
, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
,
49
(
19
), pp.
3899
3918
.
22.
Kang
,
J.
,
Becker
,
A.
, and
Sun
,
W.
,
2011
, “
A Combined Dimensional Analysis and Optimization Approach for Determining Elastic–Plastic Properties From Indentation Tests
,”
J. Strain Anal. Eng. Des.
,
46
(
8
), pp.
749
759
.
23.
Barenblatt
,
G. I.
,
Barenblatt
,
G. I.
, and
Isaakovich
,
B. G.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics
, Vol.
14
,
Cambridge University Press
,
Cambridge, UK
.
24.
Hadamard
,
J.
,
2003
,
Lectures on Cauchy’s Problem in Linear Partial Differential Equations
,
Courier Corporation
,
North Chelmsford, MA
.
You do not currently have access to this content.