Abstract

Dynamic fracture is an important area of materials analysis, assessing the atomic-level mechanisms by which materials fail over time. Here, we focus on brittle materials failure and show that an atomistically derived progressive transformer diffusion machine learning model can effectively describe the dynamics of fracture, capturing important aspects such as crack dynamics, instabilities, and initiation mechanisms. Trained on a small dataset of atomistic simulations, the model generalizes well and offers a rapid assessment of dynamic fracture mechanisms for complex geometries, expanding well beyond the original set of atomistic simulation results. Various validation cases, progressively more distinct from the data used for training, are presented and analyzed. The validation cases feature distinct geometric details, including microstructures generated by a generative neural network used here to identify novel bio-inspired material designs for mechanical performance. For all cases, the model performs well and captures key aspects of material failure.

References

1.
Tong
,
Q.
, and
Li
,
S.
,
2020
, “
A Concurrent Multiscale Study of Dynamic Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
366
.
2.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
,
Taylor & Francis
,
London
.
3.
Jung
,
G.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2015
, “
Molecular Mechanics of Polycrystalline Graphene With Enhanced Fracture Toughness
,”
Extreme Mech. Lett.
,
2
, pp.
52
59
.
4.
Buehler
,
M. J.
,
Tang
,
H.
,
van Duin
,
A. C. T.
, and
Goddard
,
W. A.
,
2007
, “
Threshold Crack Speed Controls Dynamical Fracture of Silicon Single Crystals
,”
Phys. Rev. Lett.
,
99
(
16
).
5.
Gao
,
H.
,
Buehler
,
M. J.
, and
Abraham
,
F. F.
,
2005
, “
Hyperelasticity in Dynamic Fracture: The Characteristic Energy Length Scale
,”
Proceedings of the 11th International Conference on Fracture 2005
,
Turino, Italy
.
6.
Freund
,
L. B.
,
1990
,
Dynamic Fracture Mechanics
,
Cambridge University Press
.
7.
Buehler
,
M. J.
,
Tang
,
H.
,
van Duin
,
A. C. T.
, and
Goddard
,
W. A.
,
2006
, “
Threshold Crack Speed in Dynamic Fracture of Silicon
,”
Materials Research Society Symposium Proceedings
,
Boston, MA
.
8.
Buehler
,
M. J.
, and
Gao
,
H.
,
2006
, “
Dynamical Fracture Instabilities due to Local Hyperelasticity at Crack Tips
,”
Nature
,
439
(
7074
), pp.
307
310
9.
Jung
,
G. S.
,
Wang
,
S.
,
Qin
,
Z.
,
Zhou
,
S.
,
Danaie
,
M.
,
Kirkland
,
A. I.
,
Buehler
,
M. J.
, and
Warner
,
J. H.
,
2019
, “
Anisotropic Fracture Dynamics Due to Local Lattice Distortions
,”
ACS Nano
,
13
(
5
), pp.
5693
5702
10.
Buehler
,
M. J.
,
2008
, “Atomistic Modeling of Materials Failure,”
Atomistic Modeling of Materials Failure
,
Springer US
,
Boston, MA
.
11.
Buehler
,
M. J.
,
2006
, “
Atomistic and Continuum Modeling of Mechanical Properties of Collagen: Elasticity, Fracture, and Self-assembly
,”
J. Mater. Res.
,
21
(
8
), pp.
1947
1961
.
12.
Ramesh
,
A.
,
Dhariwal
,
P.
,
Nichol
,
A.
,
Chu
,
C.
, and
Chen
,
M.
,
2022
, “
Hierarchical Text-Conditional Image Generation with CLIP Latents
,”
arXiv preprint
https://arxiv.org/abs/2204.06125
13.
Saharia
,
C.
,
Chan
,
W.
,
Saxena
,
S.
,
Li
,
L.
,
Whang
,
J.
,
Denton
,
E.
,
Ghasemipour
,
S. K. S.
, et al
,
2022
, “
Photorealistic Text-to-Image Diffusion Models With Deep Language Understanding
,”
arXiv preprint
https://arxiv.org/abs/2205.11487
14.
Nichol
,
A.
,
Dhariwal
,
P.
,
Ramesh
,
A.
,
Shyam
,
P.
,
Mishkin
,
P.
,
McGrew
,
B.
,
Sutskever
,
I.
, and
Chen
,
M.
,
2021
, “GLIDE: Towards Photorealistic Image Generation and Editing With Text-Guided Diffusion Models,”
arXiv preprint
https://arxiv.org/abs/2112.10741
15.
Yang
,
Z.
, and
Buehler
,
M. J.
,
2021
, “
Words to Matter: De Novo Architected Materials Design Using Transformer Neural Networks
,”
Front. Mater.
,
8
, p.
740754
.
16.
Hinton
,
G.
, and
Zemel
,
R.
,
1994
, “
Autoencoders, Minimum Description Length and Helmholtz Free Energy
,”
Adv. Neural Inf. Process. Syst.
,
6
(
3–10
).
17.
Dong
,
G.
,
Liao
,
G.
,
Liu
,
H.
, and
Kuang
,
G.
,
2018
, “
A Review of the Autoencoder and Its Variants: A Comparative Perspective From Target Recognition in Synthetic-Aperture Radar Images
,”
IEEE Geosci. Remote Sens. Mag.
,
6
(
3
), pp.
44
68
.
18.
Goodfellow
,
I. J.
, et al
,
2014
, “
Generative Adversarial Networks
,”
arXiv preprint
https://arxiv.org/abs/1406.2661
19.
Lebese
,
T.
,
Mellado
,
B.
, and
Ruan
,
X.
,
2021
, “
The Use of Generative Adversarial Networks to Characterise New Physics in Multi-Lepton Final States at the LHC
,”
Int. J. Mod. Phys. A
20.
Makoś
,
M. Z.
,
Verma
,
N.
,
Larson
,
E. C.
,
Freindorf
,
M.
, and
Kraka
,
E.
,
2021
, “
Generative Adversarial Networks for Transition State Geometry Prediction
,”
J. Chem. Phys.
,
155
(
2
), p.
024116
.
21.
Crowson
,
K.
,
Biderman
,
S.
,
Kornis
,
D.
,
Stander
,
D.
,
Hallahan
,
E.
,
Castricato
,
L.
, and
Raff
,
E.
,
2022
, “
VQGAN-CLIP: Open Domain Image Generation and Editing With Natural Language Guidance
,”
arXiv preprint
. https://arxiv.org/abs/2204.08583
22.
Esser
,
P.
,
Rombach
,
R.
, and
Ommer
,
B.
,
2020
, “
Taming Transformers for High-Resolution Image Synthesis
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
, pp.
12873
12883
.
23.
Marcus
,
G.
,
Davis
,
E.
, and
Aaronson
,
S.
,
2022
, “A Very Preliminary Analysis of DALL-E 2,” arXiv preprint arXiv:2204.13807.
24.
Rombach
,
R.
,
Blattmann
,
A.
,
Lorenz
,
D.
,
Esser
,
P.
, and
Ommer
,
B.
,
2022
, “
High-Resolution Image Synthesis With Latent Diffusion Models
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
, pp.
10684
10695
. https://arxiv.org/abs/2112.10752
25.
Haim
,
N.
,
Feinstein
,
B.
,
Granot
,
N.
,
Shocher
,
A.
,
Bagon
,
S.
,
Dekel
,
T.
, and
Irani
,
M.
,
2022
, “Diverse Video Generation From a Single Video,”
arXiv preprint
26.
Yan
,
W.
,
Zhang
,
Y.
,
Abbeel
,
P.
, and
Srinivas
,
A.
,
2021
, “VideoGPT: Video Generation using VQ-VAE and Transformers,” arXiv preprint arXiv:2104.10157.
27.
Aldausari
,
N.
,
Sowmya
,
A.
,
Marcus
,
N.
, and
Mohammadi
,
G.
,
2022
, “
Video Generative Adversarial Networks: A Review
,”
ACM Comput. Surv.
,
55
(
2
), pp.
1
25
.
28.
Anderson
,
B. D. O.
,
1982
, “
Reverse-Time Diffusion Equation Models
,”
Stoch Process Their Appl.
,
12
(
3
), pp.
313
326
.
29.
Lim
,
S.
,
Luan
,
H.
,
Zhao
,
S.
,
Lee
,
Y.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Ahn
,
J. H.
,
2020
, “
Assembly of Foldable 3D Microstructures Using Graphene Hinges
,”
Adv. Mater.
,
32
(
28
), p.
2001303
.
30.
Zhai
,
Z.
,
Wang
,
Y.
,
Lin
,
K.
,
Wu
,
L.
, and
Jiang
,
H.
,
2020
, “
In Situ Stiffness Manipulation Using Elegant Curved Origami
,”
Sci. Adv.
,
6
(
47
).
31.
Lejeune
,
E.
,
2020
, “
Mechanical MNIST: A Benchmark Dataset for Mechanical Metamodels
,”
Extreme Mech. Lett.
,
36
, p.
100659
.
32.
Yuan
,
L.
,
Park
,
H. S.
, and
Lejeune
,
E.
,
2022
, “
Towards Out of Distribution Generalization for Problems in Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
400
, p.
115569
.
33.
Qin
,
H.
,
2020
, “
Machine Learning and Serving of Discrete Field Theories
,”
Sci. Rep.
,
10
(
1
), pp.
1
15
.
34.
Tang
,
J.
,
Geng
,
X.
,
Li
,
D.
,
Shi
,
Y.
,
Tong
,
J.
,
Xiao
,
H.
, and
Peng
,
F.
, “
Machine Learning-Based Microstructure Prediction During Laser Sintering of Alumina
,”
Sci. Rep.
,
11
(
1
), pp.
1
11
.
35.
Kauwe
,
S. K.
,
Graser
,
J.
,
Murdock
,
R.
, and
Sparks
,
T. D.
,
2020
, “
Can Machine Learning Find Extraordinary Materials?
,”
Comput. Mater. Sci.
,
174
, p.
109498
.
36.
Schmidt
,
J.
,
Marques
,
M. R. G.
,
Botti
,
S.
, and
Marques
,
M. A. L.
,
2019
, “
Recent Advances and Applications of Machine Learning in Solid-State Materials Science
,”
npj Comput. Mater.
,
5
(
1
), pp.
1
36
.
37.
Reyes
,
K. G.
, and
Maruyama
,
B.
,
2019
, “
The Machine Learning Revolution in Materials?
,”
MRS Bull.
,
44
(
7
), pp.
530
537
.
38.
Buehler
,
M. J.
,
2022
, “
FieldPerceiver: Domain Agnostic Transformer Model to Predict Multiscale Physical Fields and Nonlinear Material Properties Through Neural Ologs
,”
Mater. Today
,
57
, pp.
9
25
.
39.
Buehler
,
E. L.
, and
Buehler
,
M. J.
,
2022
, “
End-to-End Prediction of Multimaterial Stress Fields and Fracture Patterns Using Cycle-Consistent Adversarial and Transformer Neural Networks
,”
Adv. Biomed. Eng.
,
4
, p.
100038
.
40.
Yang
,
Z.
,
Yu
,
C. H.
, and
Buehler
,
M. J.
,
2021
, “
Deep Learning Model to Predict Complex Stress and Strain Fields in Hierarchical Composites
,”
Sci. Adv.
,
7
(
15
).
41.
Hsu
,
Y. C.
,
Yu
,
C. H.
, and
Buehler
,
M. J.
,
2020
, “
Using Deep Learning to Predict Fracture Patterns in Crystalline Solids
,”
Matter
,
3
(
1
), pp.
197
211
.
42.
Lew
,
A. J.
, and
Buehler
,
M. J.
,
2021
, “
A Deep Learning Augmented Genetic Algorithm Approach to Polycrystalline 2D Material Fracture Discovery and Design
,”
Appl. Phys. Rev.
,
8
(
4
), p.
041414
.
43.
Sohl-Dickstein
,
J.
,
Weiss
,
E. A.
,
Maheswaranathan
,
N.
, and
Ganguli
,
S.
,
2015
, “
Deep Unsupervised Learning Using Nonequilibrium Thermodynamics
,”
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015
,
Lille, France
, Vol. 3, pp.
2246
2255
.
44.
Ho
,
J.
,
Jain
,
A.
, and
Abbeel
,
P.
,
2020
, “
Denoising Diffusion Probabilistic Models
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
6840
6851
.
45.
Nichol
,
A.
, and
Dhariwal
,
P.
,
2021
, “
Improved Denoising Diffusion Probabilistic Models
,”
arXiv preprint
https://arxiv.org/abs/2102.09672
46.
Karras
,
T.
,
Aittala
,
M.
,
Aila
,
T.
, and
Laine
,
S.
,
2022
, “Elucidating the Design Space of Diffusion-Based Generative Models,” arXiv preprint arXiv:2206.00364.
47.
CompVis/Latent-Diffusion: High-Resolution Image Synthesis With Latent Diffusion Models
,”
arXiv preprint
https://github.com/CompVis/latent-diffusion
48.
Wang
,
X.
,
Tabarraei
,
A.
, and
Spearot
,
D. E.
,
2015
, “
Fracture Mechanics of Monolayer Molybdenum Disulfide
,”
Nanotechnology
,
26
(
17
), p.
175703
.
49.
Buehler
,
M. J.
,
van Duin
,
A. C. T.
, and
Goddard
W. A.
, III
2006
, “
Multiparadigm Modeling of Dynamical Crack Propagation in Silicon Using a Reactive Force Field
,”
Phys. Rev. Lett.
,
96
(
9
), p.
095505
.
50.
Xu
,
Z.
, and
Buehler
,
M. J.
,
2010
, “
Interface Structure and Mechanics Between Graphene and Metal Substrates: A First-Principles Study
,”
J. Phys. Conden. Matter
,
22
(
48
), p.
485301
.
51.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1987
,
Computer Simulation of Liquids
,
Clarendon
,
Oxford
.
52.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
in't Veld
,
P. J.
, et al
,
2022
, “
LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, p.
108171
.
53.
Saharia
,
C.
,
Chan
,
W.
,
Chang
,
H.
,
Lee
,
C.
,
Ho
,
J.
,
Salimans
,
T.
,
Fleet
,
D.
, and
Norouzi
,
M.
,
2021
, “
Palette: Image-to-Image Diffusion Models
,”
arXiv preprint
https://arxiv.org/abs/2111.05826
54.
Lucidrains/imagen-Pytorch: Implementation of Imagen, Google’s Text-to-Image Neural Network, in Pytorch, https://github.com/lucidrains/imagen-pytorch
You do not currently have access to this content.