Abstract

We introduce a computational framework for the topology optimization of cellular structures with spatially varying architecture, which is applied to functionally graded truss lattices under quasistatic loading. We make use of a first-order homogenization approach, which replaces the discrete truss by an effective continuum description to be treated by finite elements in a macroscale boundary value problem. By defining the local truss architecture through a set of Bravais vectors, we formulate the optimization problem with regards to the spatially varying basis vectors and demonstrate its feasibility and performance through a series of benchmark problems in 2D (though the method is sufficiently general to also apply in 3D, as discussed). Both the displacement field and the topology are continuously varying unknown fields on the macroscale, and a regularization is included for well posedness. We argue that prior solutions obtained from aligning trusses along the directions of principal stresses are included as a special case. The outlined approach results in heterogeneous truss architectures with a smoothly varying unit cell, enabling easy fabrication with a tunable length scale (the latter avoiding the ill-posedness stemming from classical nonconvex methods without an intrinsic length scale).

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed. (
Cambridge Solid State Science Series
),
Cambridge University Press
,
Cambridge, UK
.
2.
Ashby
,
M. F.
,
2016
,
Materials Selection in Mechanical Design
,
Butterworth-Heinemann
,
Oxford, UK
.
3.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3
), pp.
309
327
.
4.
Lakes
,
R.
,
1993
, “
Materials With Structural Hierarchy
,”
Nature
,
361
(
6412
), pp.
511
515
.
5.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
Monika M.
,
Ge
,
Qi
,
Jackson
,
Julie A.
,
Kucheyev
,
Sergei O.
,
Fang
,
Nicholas X.
, and
Spadaccini
,
Christopher M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
6.
Meza
,
L. R.
,
Zelhofer
,
A. J.
,
Clarke
,
N.
,
Mateos
,
A. J.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2015
, “
Resilient 3D Hierarchical Architected Metamaterials
,”
Proc. Natl. Acad. Sci.
,
112
(
37
), pp.
11502
11507
.
7.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
466
(
2121
), pp.
2495
2516
.
8.
Schaedler
,
T. A.
, and
Carter
,
W. B.
,
2016
, “
Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
187
210
.
9.
Valdevit
,
L.
,
Bertoldi
,
K.
,
Guest
,
J.
, and
Spadaccini
,
C.
,
2018
, “
Architected Materials: Synthesis, Characterization, Modeling, and Optimal Design
,”
J. Mater. Res.
,
33
(
3
), pp.
241
246
.
10.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
11.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
12.
Sigmund
,
O.
,
1994
, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
,
31
(
17
), pp.
2313
2329
.
13.
Milton
,
G. W.
, and
Cherkaev
,
A. V.
,
1995
, “
Which Elasticity Tensors Are Realizable?
,”
J. Eng. Mater. Technol.
,
117
(
4
), pp.
483
493
.
14.
Huang
,
X.
,
Radman
,
A.
, and
Xie
,
Y. M.
,
2011
, “
Topological Design of Microstructures of Cellular Materials for Maximum Bulk or Shear Modulus
,”
Comput. Mater. Sci.
,
50
(
6
), pp.
1861
1870
.
15.
Bückmann
,
T.
,
Thiel
,
M.
,
Kadic
,
M.
,
Schittny
,
R.
, and
Wegener
,
M.
,
2014
, “
An Elasto-Mechanical Unfeelability Cloak Made of Pentamode Metamaterials
,”
Nat. Commun.
,
5
(
1
), p.
4130
.
16.
Wadley
,
H.
,
Dharmasena
,
K.
,
Chen
,
Y.
,
Dudt
,
P.
,
Knight
,
D.
,
Charette
,
R.
, and
Kiddy
,
K.
,
2008
, “
Compressive Response of Multilayered Pyramidal Lattices During Underwater Shock Loading
,”
Int. J. Impact Eng.
,
35
(
9
), pp.
1102
1114
.
17.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
18.
Zelhofer
,
A. J.
, and
Kochmann
,
D. M.
,
2017
, “
On Acoustic Wave Beaming in Two-Dimensional Structural Lattices
,”
Int. J. Solids Struct.
,
115–116
(
4
), pp.
248
269
.
19.
Clausen
,
A.
,
Wang
,
F.
,
Jensen
,
J. S.
,
Sigmund
,
O.
, and
Lewis
,
J. A.
,
2015
, “
Topology Optimized Architectures with Programmable Poisson’s Ratio Over Large Deformations
,”
Adv. Mater.
,
27
(
37
), pp.
5523
5527
.
20.
Symons
,
D. D.
, and
Fleck
,
N. A.
,
2008
, “
The Imperfection Sensitivity of Isotropic Two-Dimensional Elastic Lattices
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051011
.
21.
Montemayor
,
L. C.
,
Wong
,
W. H.
,
Zhang
,
Y.-W.
, and
Greer
,
J. R.
,
2016
, “
Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials
,”
Sci. Rep.
,
6
(
1
), p.
20570
.
22.
Thomsen
,
C. R.
,
Wang
,
F.
, and
Sigmund
,
O.
,
2018
, “
Buckling Strength Topology Optimization of 2D Periodic Materials Based on Linearized Bifurcation Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
339
(
37
), pp.
115
136
.
23.
Pham
,
M.-S.
,
Liu
,
C.
,
Todd
,
I.
, and
Lertthanasarn
,
J.
,
2019
, “
Damage-Tolerant Architected Materials Inspired by Crystal Microstructure
,”
Nature
,
565
(
7739
), pp.
305
311
.
24.
Cadman
,
J. E.
,
Zhou
,
S.
,
Chen
,
Y.
, and
Li
,
Q.
,
2013
, “
On Design of Multi-Functional Microstructural Materials
,”
J. Mater. Sci.
,
48
(
1
), pp.
51
66
.
25.
Osanov
,
M.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization for Architected Materials Design
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
211
233
.
26.
Jain
,
A.
,
Ong
,
S. P.
,
Hautier
,
G.
,
Chen
,
W.
,
Richards
,
W. D.
,
Dacek
,
S.
,
Cholia
,
S.
,
Gunter
,
D.
,
Skinner
,
D.
,
Ceder
,
G.
, and
Persson
,
K. A.
,
2013
, “
Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation
,”
APL Mater.
,
1
(
1
), p.
011002
.
27.
Sigmund
,
O.
,
2000
, “
A New Class of Extremal Composites
,”
J. Mech. Phys. Solids
,
48
(
2
), pp.
397
428
.
28.
Berger
,
J. B.
,
Wadley
,
H. N. G.
, and
McMeeking
,
R. M.
,
2017
, “
Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,”
Nature
,
543
(
7646
), pp.
533
.
537
29.
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2003
, “
Systematic Design of Phononic Band–Gap Materials and Structures by Topology Optimization
,”
Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci.
,
361
(
1806
), pp.
1001
1019
.
30.
Bilal
,
O. R.
, and
Hussein
,
M. I.
,
2011
, “
Ultrawide Phononic Band Gap for Combined In-Plane and Out-of-Plane Waves
,”
Phys. Rev. E
,
84
(
6
), p.
065701(R)
, arXiv: 1111.1457.
31.
Pasini
,
D.
, and
Guest
,
J. K.
,
2019
, “
Imperfect Architected Materials: Mechanics and Topology Optimization
,”
MRS Bull.
,
44
(
10
), pp.
766
772
.
32.
Kochmann
,
D. M.
,
Hopkins
,
J. B.
, and
Valdevit
,
L.
,
2019
, “
Multiscale Modeling and Optimization of the Mechanics of Hierarchical Metamaterials
,”
MRS Bull.
,
44
(
10
), pp.
773
781
.
33.
Aage
,
N.
,
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2017
, “
Giga-Voxel Computational Morphogenesis for Structural Design
,”
Nature
,
550
(
7674
), pp.
84
86
.
34.
Lazarov
,
B.
,
Wang
,
F.
, and
Sigmund
,
O.
,
2016
, “
Length Scale and Manufacturability in Density-Based Topology Optimization
,”
Arch. Appl. Mech.
,
86
(
1–2
), pp.
189
218
.
35.
Milton
,
G. W.
,
1986
, “Modelling the Properties of Composites by Laminates,”
Homogenization and Effective Moduli of Materials and Media
(
The IMA Volumes in Mathematics and Its Applications
),
Ericksen
,
J. L.
,
Kinderlehrer
,
D.
,
Kohn
,
R.
,
Lions
,
J.-L.
, eds.,
Springer
,
New York
, pp.
150
174
.
36.
Träff
,
E.
,
Sigmund
,
O.
, and
Groen
,
J.
,
2018
, “
Simple Single-Scale Microstructures Based on Optimal Rank-3 Laminates
,”
Struct. Multidiscipl. Optim.
,
59
(
4
), pp.
1021
1031
.
37.
Groen
,
J. P.
, and
Sigmund
,
O.
,
2018
, “
Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1148
1163
.
38.
Rodrigues
,
H.
,
Guedes
,
J.
, and
Bendsoe
,
M.
,
2002
, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscipl. Optim.
,
24
(
1
), pp.
1
10
.
39.
Coelho
,
P. G.
,
Fernandes
,
P. R.
,
Guedes
,
J. M.
, and
Rodrigues
,
H. C.
,
2008
, “
A Hierarchical Model for Concurrent Material and Topology Optimisation of Three-Dimensional Structures
,”
Struct. Multidiscipl. Optim.
,
35
(
2
), pp.
107
115
.
40.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1267
1281
.
41.
Wang
,
Y.
,
Xu
,
H.
, and
Pasini
,
D.
,
2017
, “
Multiscale Isogeometric Topology Optimization for Lattice Materials
,”
Comput. Methods Appl. Mech. Eng.
,
316
(
1
), pp.
568
585
.
42.
Xia
,
L.
, and
Breitkopf
,
P.
,
2014
, “
Concurrent Topology Optimization Design of Material and Structure Within FE2 Nonlinear Multiscale Analysis Framework
,”
Comput. Methods Appl. Mech. Eng.
,
278
(
1
), pp.
524
542
.
43.
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2012
, “
Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants With Functionally Graded Cellular Material.
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031004
.
44.
Wang
,
Y.
,
Arabnejad
,
S.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2018
, “
Hip Implant Design With Three-Dimensional Porous Architecture of Optimized Graded Density
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111406
.
45.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3d Printing
,”
ACM Trans. Graph.
,
34
(
4
), pp.
136:1
136:13
.
46.
Chen
,
D.
,
Skouras
,
M.
,
Zhu
,
B.
, and
Matusik
,
W.
,
2018
, “
Computational Discovery of Extremal Microstructure Families
,”
Sci. Adv.
,
4
(
1
), p.
eaao7005
.
47.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2013
, “
Topology Optimization of Functionally Graded Cellular Materials
,”
J. Mater. Sci.
,
48
(
4
), pp.
1503
1510
.
48.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-Scale Topology Optimization With Microstructures
,”
ACM Trans. Graph.
,
36
(
4
), pp.
164:1
164:16
.
49.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111417
.
50.
Panetta
,
J.
,
Zhou
,
Q.
,
Malomo
,
L.
,
Pietroni
,
N.
,
Cignoni
,
P.
, and
Zorin
,
D.
,
2015
, “
Elastic Textures for Additive Fabrication
,”
ACM Trans. Graph.
,
34
(
4
), pp.
135:1
135:12
.
51.
Schury
,
F.
,
Stingl
,
M.
, and
Wein
,
F.
,
2012
, “
Efficient Two-Scale Optimization of Manufacturable Graded Structures
,”
SIAM J. Sci. Comput.
,
34
(
6
), pp.
B711
B733
.
52.
Sanders
,
E. D.
,
Aguiló
,
M. A.
, and
Paulino
,
G. H.
,
2018
, “
Multi-Material Continuum Topology Optimization With Arbitrary Volume and Mass Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
340
(
8
), pp.
798
823
.
53.
Zhang
,
X. S.
,
Chi
,
H.
, and
Paulino
,
G. H.
,
2020
, “
Adaptive Multi-material Topology Optimization with Hyperelastic Materials Under Large Deformations: A Virtual Element Approach
,”
Comput. Methods Appl. Mech. Eng.
,
370
(
3
), p.
112976
.
54.
Sanders
,
E. D.
,
Pereira
,
A.
, and
Paulino
,
G. H.
,
2021
, “
Optimal and Continuous Multilattice Embedding
,”
Sci. Adv.
,
7
(
16
), p.
eabf4838
.
55.
Dunning
,
P. D.
,
Brampton
,
C. J.
, and
Kim
,
H. A.
,
2015
, “
Simultaneous Optimisation of Structural Topology and Material Grading Using Level Set Method
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
884
894
.
56.
Greifenstein
,
J.
, and
Stingl
,
M.
,
2016
, “
Simultaneous Parametric Material and Topology Optimization With Constrained Material Grading
,”
Struct. Multidiscipl. Optim.
,
54
(
4
), pp.
985
998
.
57.
Allaire
,
G.
,
Geoffroy-Donders
,
P.
, and
Pantz
,
O.
,
2019
, “
Topology Optimization of Modulated and Oriented Periodic Microstructures by the Homogenization Method
,”
Comput. Math. Appl.
,
78
(
7
), pp.
2197
2229
.
58.
Xu
,
L.
, and
Qian
,
Z.
,
2021
, “
Topology Optimization and De-Homogenization of Graded Lattice Structures Based on Asymptotic Homogenization
,”
Compos. Struct.
,
277
(
3
), p.
114633
.
59.
Kumar
,
T.
, and
Suresh
,
K.
,
2020
, “
A Density-and-Strain-Based K-Clustering Approach to Microstructural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
61
(
4
), pp.
1399
1415
.
60.
Pantz
,
O.
, and
Trabelsi
,
K.
,
2008
, “
A Post-Treatment of the Homogenization Method for Shape Optimization
,”
SIAM J. Control Optim.
,
47
(
3
), pp.
1380
1398
.
61.
Wu
,
J.
,
Wang
,
W.
, and
Gao
,
X.
,
2019
, “
Design and Optimization of Conforming Lattice Structures
,”
IEEE Trans. Vis. Comput. Graph.
,
27
(
1
), pp.
43
56
. arXiv: 1905.02902.
62.
Wu
,
J.
,
Sigmund
,
O.
, and
Groen
,
J. P.
,
2021
, “
Topology Optimization of Multi-Scale Structures: a Review
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1455
1480
.
63.
Glaesener
,
R. N.
,
Lestringant
,
C.
,
Telgen
,
B.
, and
Kochmann
,
D. M.
,
2019
, “
Continuum Models for Stretching- and Bending-Dominated Periodic Trusses Undergoing Finite Deformations
,”
Int. J. Solids Struct.
,
171
(
1
), pp.
117
134
.
64.
Rumpf
,
R. C.
, and
Pazos
,
J.
,
2012
, “
Synthesis of Spatially Variant Lattices
,”
Opt. Express
,
20
(
14
), pp.
15263
15274
.
65.
Groen
,
J.
,
Stutz
,
F.
,
Aage
,
N.
,
Bærentzen
,
J.
, and
Sigmund
,
O.
,
2020
, “
De-Homogenization of Optimal Multi-Scale 3d Topologies
,”
Comput. Methods Appl. Mech. Eng.
,
364
(
6
), p.
112979
.
66.
Xue
,
D.
,
Zhu
,
Y.
,
Li
,
S.
,
Liu
,
C.
,
Zhang
,
W.
, and
Guo
,
X.
,
2020
, “
On Speeding Up an Asymptotic-Analysis-Based Homogenisation Scheme for Designing Gradient Porous Structured Materials Using a Zoning Strategy
,”
Struct. Multidiscipl. Optim.
,
62
(
2
), pp.
457
473
.
67.
Geoffroy-Donders
,
P.
,
Allaire
,
G.
, and
Pantz
,
O.
,
2020
, “
3-d Topology Optimization of Modulated and Oriented Periodic Microstructures by the Homogenization Method
,”
J. Comput. Phys.
,
401
(
1
), p.
108994
.
68.
Kittel
,
C.
,
1986
,
Introduction to Solid State Physics
, 8th ed.,
Wiley
,
Hoboken, NJ
.
69.
Bravais
,
A.
,
1850
, “
Mémoire Sur Les Systèmes Formés Par Des Points Distribués Régulièrement Sur Un Plan Ou Dans L’espace
,”
J. École Polytech.
,
19
(
1
), pp.
1
128
.
70.
Wigner
,
E.
, and
Seitz
,
F.
,
1933
, “
On the Constitution of Metallic Sodium
,”
Phys. Rev.
,
43
(
10
), pp.
804
810
.
71.
Crisfield
,
M. A.
,
1990
, “
A Consistent Co-Rotational Formulation for Non-Linear, Three-dimensional, Beam-Elements
,”
Comput. Methods Appl. Mech. Eng.
,
81
(
2
), pp.
131
150
.
72.
Borrvall
,
T.
,
2001
, “
Topology Optimization of Elastic Continua Using Restriction
,”
Arch. Comput. Methods Eng.
,
8
(
4
), pp.
351
385
.
73.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
74.
Sigmund
,
O.
,
Aage
,
N.
, and
Andreassen
,
E.
,
2016
, “
On the (Non-)optimality of Michell Structures
,”
Struct. Multidiscipl. Optim.
,
54
(
2
), pp.
361
373
.
75.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
(
1
), pp.
68
75
.
76.
Chan
,
A.S.L.
,
1962
, “
The Design of Michell Optimum Structures
,”
Cranfield College of Aeronautics
,
142
(
1
), pp.
1
31
. http://hdl.handle.net/1826/2492
77.
Pedersen
,
P.
,
1989
, “
On Optimal Orientation of Orthotropic Materials
,”
Struct. Optim.
,
1
(
2
), pp.
101
106
.
78.
Groen
,
J. P.
,
Wu
,
J.
, and
Sigmund
,
O.
,
2019
, “
Homogenization-Based Stiffness Optimization and Projection of 2d Coated Structures With Orthotropic Infill
,”
Comput. Methods Appl. Mech. Eng.
,
349
, pp.
722
742
.
You do not currently have access to this content.