Abstract

The bendability of extruded profiles of an age hardenable aluminum alloy is investigated using mechanical tests on flat tensile specimens and bending specimens. Two profile geometries are considered, where the profiles exhibit different grain structures. The microstructure of the profiles in terms of the crystallographic texture and constituent particles is otherwise comparable. While the tensile properties are not that different for the two profiles, their bendability is strongly dependent on the grain structure and is about twice as high for one profile than for the other. A newly proposed coupled damage and single crystal plasticity model is used in finite element analyses of the mechanical tests to investigate the influence of the grain structure on the bending behavior, and the numerical results are compared to the experimental tests. The crystallographic texture and the grain morphology of the profiles, found by the electron back-scatter diffraction technique, are explicitly represented in the finite element models. The crystal plasticity simulations capture the difference in the bendability of the two profiles, and in agreement with the experiments predict a considerably higher bendability for one of the profiles. It is found that the grain structure affects the shear band formation in these profiles, but also the local texture where the shear bands are located is important for crack initiation and propagation as grains with certain crystallographic orientations may have a higher fracture resistance.

References

1.
Marioara
,
C. D.
,
Andersen
,
S. J.
,
Zandbergen
,
H. W.
, and
Holmestad
,
R.
,
2005
, “
The Influence of Alloy Composition on Precipitates of the Al–Mg–Si System
,”
Metall. Mater. Trans. A
,
36
, pp.
691
702
.
2.
Remøe
,
M. S.
,
Marthinsen
,
K.
,
Westermann
,
I.
,
Pedersen
,
K.
,
Røyset
,
J.
, and
Marioara
,
C.
,
2017
, “
The Effect of Alloying Elements on the Ductility of Al–Mg–Si Alloys
,”
Mater. Sci. Eng. A
,
693
, pp.
60
72
.
3.
Deschamps
,
A.
,
Texier
,
G.
,
Ringeval
,
S.
, and
Delfaut-Durut
,
L.
,
2009
, “
Influence of Cooling Rate on the Precipitation Microstructure in a Medium Strength Al–Zn–Mg Alloy
,”
Mater. Sci. Eng. A
,
501
, pp.
133
139
.
4.
Strobel
,
K.
,
Lay
,
M. D. H.
,
Easton
,
M. A.
,
Sweet
,
L.
,
Zhu
,
S.
,
Parson
,
N. C.
, and
Hill
,
A. J.
,
2016
, “
Effects of Quench Rate and Natural Ageing on the Age Hardening Behaviour of Aluminium Alloy AA6060
,”
Mater. Charact.
,
111
, pp.
43
52
.
5.
Lezaack
,
M. B.
,
Hannard
,
F.
,
Zhao
,
L.
,
Orekhov
,
A.
,
Adrien
,
J.
,
Miettinen
,
A.
,
Idrissi
,
H.
, and
Simar
,
A.
,
2021
, “
Towards Ductilization of High Strength 7XXX Aluminium Alloys Via Microstructural Modifications Obtained by Friction Stir Processing and Heat Treatments
,”
Materialia
,
20
, p.
101248
.
6.
Lezaack
,
M. B.
,
Hannard
,
F.
, and
Simar
,
A.
,
2022
, “
Understanding the Ductility Versus Toughness and Bendability Decoupling of Large Elongated and Fine Grained Al 7475–T6 Alloy
,”
Mater. Sci. Eng. A
,
839
, p.
142816
.
7.
Yang
,
K. V.
,
Rometsch
,
P.
,
Davies
,
C. H. J.
,
Huang
,
A.
, and
Wu
,
X.
,
2018
, “
Effect of Heat Treatment on the Microstructure and Anisotropy in Mechanical Properties of A357 Alloy Produced by Selective Laser Melting
,”
Mater. Des.
,
154
, pp.
275
290
.
8.
Nakata
,
T.
,
Xu
,
C.
,
Ajima
,
R.
,
Matsumoto
,
Y.
,
Shimizu
,
K.
,
Sasaki
,
T. T.
,
Hono
,
K.
, and
Kamado
,
S.
,
2018
, “
Improving Mechanical Properties and Yield Asymmetry in High-Speed Extrudable Mg–1.1Al–0.24Ca (wt%) Alloy by High Mn Addition
,”
Mater. Sci. Eng. A
,
712
, pp.
12
19
.
9.
Frodal
,
B. H.
,
Christiansen
,
E.
,
Myhr
,
O. R.
, and
Hopperstad
,
O. S.
,
2020
, “
The Role of Quench Rate on the Plastic Flow and Fracture of Three Aluminium Alloys With Different Grain Structure and Texture
,”
Int. J. Eng. Sci.
,
150
, p.
103257
.
10.
Kuroda
,
M.
, and
Tvergaard
,
V.
,
2007
, “
Effects of Texture on Shear Band Formation in Plane Strain Tension/Compression and Bending
,”
Int. J. Plast.
,
23
, pp.
244
272
.
11.
Takeda
,
H.
,
Hibino
,
A.
, and
Takata
,
K.
,
2010
, “
Influence of Crystal Orientations on the Bendability of an Al–Mg–Si Alloy
,”
Mater. Trans.
,
51
, pp.
614
619
.
12.
Ikawa
,
S.
,
Asano
,
M.
,
Kuroda
,
M.
, and
Yoshida
,
K.
,
2011
, “
Effects of Crystal Orientation on Bendability of Aluminum Alloy Sheet
,”
Mater. Sci. Eng. A
,
528
, pp.
4050
4054
.
13.
Shi
,
Y.
,
Jin
,
H.
,
Wu
,
P. D.
, and
Lloyd
,
D. J.
,
2016
, “
On the Study of the Sheet Bendability in AA5754-O Temper Alloy
,”
Metall. Mater. Trans. A
,
47
, pp.
5203
5213
.
14.
Zhang
,
K.
,
He
,
Q.
,
Rao
,
J. H.
,
Wang
,
Y.
,
Zhang
,
R.
,
Yuan
,
X.
,
Feng
,
W.
, and
Huang
,
A.
,
2021
, “
Correlation of Textures and Hemming Performance of an AA6XXX Aluminium Alloy
,”
J. Alloys Compd.
,
853
, p.
157081
.
15.
Engler
,
O.
, and
Randle
,
V.
,
2009
,
Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping
, 2nd ed.,
CRC Press, Taylor & Francis Group
.
16.
Westermann
,
I.
,
Snilsberg
,
K. E.
,
Sharifi
,
Z.
,
Hopperstad
,
O. S.
,
Marthinsen
,
K.
, and
Holmedal
,
B.
,
2011
, “
Three-Point Bending of Heat-Treatable Aluminum Alloys: Influence of Microstructure and Texture on Bendability and Fracture Behavior
,”
Metall. Mater. Trans. A
,
42
, pp.
3386
3398
.
17.
Saai
,
A.
,
Westermann
,
I.
,
Dumoulin
,
S.
, and
Hopperstad
,
O. S.
,
2016
, “
Crystal Plasticity Finite Element Simulations of Pure Bending of Aluminium Alloy AA7108
,”
Int. J. Mater. Form.
,
9
, pp.
457
469
.
18.
Davidkov
,
A.
,
Jain
,
M.
,
Petrov
,
R.
,
Wilkinson
,
D.
, and
Mishra
,
R.
,
2012
, “
Strain Localization and Damage Development During Bending of Al–Mg Alloy Sheets
,”
Mater. Sci. Eng. A
,
550
, pp.
395
407
.
19.
Muhammad
,
W.
,
Kang
,
J.
,
Brahme
,
A. P.
,
Ali
,
U.
,
Hirsch
,
J.
,
Brinkman
,
H.-J.
,
Engler
,
O.
,
Mishra
,
R. K.
, and
Inal
,
K.
,
2019
, “
Bendability Enhancement of an Age-Hardenable Aluminum Alloy: Part I—Relationship Between Microstructure, Plastic Deformation and Fracture
,”
Mater. Sci. Eng. A
,
753
, pp.
179
191
.
20.
Muhammad
,
W.
,
Brahme
,
A. P.
,
Ali
,
U.
,
Hirsch
,
J.
,
Engler
,
O.
,
Aretz
,
H.
,
Kang
,
J.
,
Mishra
,
R. K.
, and
Inal
,
K.
,
2019
, “
Bendability Enhancement of an Age-Hardenable Aluminum Alloy: Part II—Multiscale Numerical Modeling of Shear Banding and Fracture
,”
Mater. Sci. Eng. A
,
754
, pp.
161
177
.
21.
Pineau
,
A.
,
Benzerga
,
A. A.
, and
Pardoen
,
T.
,
2016
, “
Failure of Metals I: Brittle and Ductile Fracture
,”
Acta Mater.
,
107
, pp.
424
483
.
22.
Tekoğlu
,
C.
,
Hutchinson
,
J. W.
, and
Pardoen
,
T.
,
2015
, “
On Localization and Void Coalescence as a Precursor to Ductile Fracture
,”
Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci.
,
373
, p.
20140121
.
23.
Frodal
,
B. H.
,
Morin
,
D.
,
Børvik
,
T.
, and
Hopperstad
,
O. S.
,
2020
, “
On the Effect of Plastic Anisotropy, Strength and Work Hardening on the Tensile Ductility of Aluminium Alloys
,”
Int. J. Solids Struct.
,
188–189
, pp.
118
132
.
24.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Metals
,
62
, pp.
307
324
.
25.
Hutchinson
,
J. W.
,
1976
, “
Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials
,”
Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci.
,
348
, pp.
101
127
.
26.
Kocks
,
U. F.
, and
Chandra
,
H.
,
1982
, “
Slip Geometry in Partially Constrained Deformation
,”
Acta Metall.
,
30
, pp.
695
709
.
27.
Van Houtte
,
P.
,
1982
, “
On the Equivalence of the Relaxed Taylor Theory and the Bishop-Hill Theory for Partially Constrained Plastic Deformation of Crystals
,”
Mater. Sci. Eng.
,
55
, pp.
69
77
.
28.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D. D.
,
Bieler
,
T. R.
, and
Raabe
,
D.
,
2010
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
,
58
, pp.
1152
1211
.
29.
Kanjarla
,
A. K.
,
Van Houtte
,
P.
, and
Delannay
,
L.
,
2010
, “
Assessment of Plastic Heterogeneity in Grain Interaction Models Using Crystal Plasticity Finite Element Method
,”
Int. J. Plast.
,
26
, pp.
1220
1233
.
30.
Knezevic
,
M.
,
Drach
,
B.
,
Ardeljan
,
M.
, and
Beyerlein
,
I. J.
,
2014
, “
Three Dimensional Predictions of Grain Scale Plasticity and Grain Boundaries Using Crystal Plasticity Finite Element Models
,”
Comput. Methods Appl. Mech. Eng.
,
277
, pp.
239
259
.
31.
Eghtesad
,
A.
,
Germaschewski
,
K.
,
Lebensohn
,
R. A.
, and
Knezevic
,
M.
,
2020
, “
A Multi-GPU Implementation of a Full-Field Crystal Plasticity Solver for Efficient Modeling of High-Resolution Microstructures
,”
Comput. Phys. Commun.
,
254
, p.
107231
.
32.
Feather
,
W. G.
,
Lim
,
H.
, and
Knezevic
,
M.
,
2021
, “
A Numerical Study Into Element Type and Mesh Resolution for Crystal Plasticity Finite Element Modeling of Explicit Grain Structures
,”
Comput. Mech.
,
67
, pp.
33
55
.
33.
Muhammad
,
W.
,
Ali
,
U.
,
Brahme
,
A. P.
,
Kang
,
J.
,
Mishra
,
R. K.
, and
Inal
,
K.
,
2019
, “
Experimental Analyses and Numerical Modeling of Texture Evolution and the Development of Surface Roughness During Bending of an Extruded Aluminum Alloy Using a Multiscale Modeling Framework
,”
Int. J. Plast.
,
117
, pp.
93
121
.
34.
Gorji
,
M. B.
,
2015
, “
Instability and Fracture Models to Optimize the Metal Forming and Bending Crack Behavior of Al-Alloy Composites
,” Ph.D. thesis, ETH Zürich.
35.
Gorji
,
M. B.
,
Berisha
,
B.
,
Hora
,
P.
, and
Barlat
,
F.
,
2016
, “
Modeling of Localization and Fracture Phenomena in Strain and Stress Space for Sheet Metal Forming
,”
Int. J. Mater. Form.
,
9
, pp.
573
584
.
36.
Gorji
,
M. B.
,
Manopulo
,
N.
,
Hora
,
P.
, and
Barlat
,
F.
,
2016
, “
Numerical Investigation of the Post-Necking Behavior of Aluminum Sheets in the Presence of Geometrical and Material Inhomogeneities
,”
Int. J. Solids Struct.
,
102–103
, pp.
56
65
.
37.
Frodal
,
B. H.
,
Thomesen
,
S.
,
Børvik
,
T.
, and
Hopperstad
,
O. S.
,
2021
, “
On the Coupling of Damage and Single Crystal Plasticity for Ductile Polycrystalline Materials
,”
Int. J. Plast.
,
142
, p.
102996
.
38.
The Aluminium Association
,
2015
, “
International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
.”
39.
Bachmann
,
F.
,
Hielscher
,
R.
, and
Schaeben
,
H.
,
2010
, “
Texture Analysis With MTEX—Free and Open Source Software Toolbox
,”
Solid State Phenomena
,
160
, pp.
63
68
.
40.
VDA
,
2010
, “
German Association of the Automotive Industry (VDA)
,” VDA 238-100 Plate Bending Test for Metallic Materials.
41.
SCMM-hypo
,
2022
, “
SIMLab Crystal Mechanics Model—Hypoelastic Formulation (SCMM-hypo) Version 3.0.0
.” https://github.com/frodal/SCMM-hypo
42.
Han
,
X.
,
Besson
,
J.
,
Forest
,
S.
,
Tanguy
,
B.
, and
Bugat
,
S.
,
2013
, “
A Yield Function for Single Crystals Containing Voids
,”
Int. J. Solids Struct.
,
50
, pp.
2115
2131
.
43.
Paux
,
J.
,
Morin
,
L.
,
Brenner
,
R.
, and
Kondo
,
D.
,
2015
, “
An Approximate Yield Criterion for Porous Single Crystals
,”
Eur. J. Mech. A/Solids
,
51
, pp.
1
10
.
44.
Khadyko
,
M.
,
Frodal
,
B. H.
, and
Hopperstad
,
O. S.
,
2021
, “
Finite Element Simulation of Ductile Fracture in Polycrystalline Materials Using a Regularized Porous Crystal Plasticity Model
,”
Int. J. Fracture
,
228
, pp.
15
31
.
45.
Texture2Abaqus
,
2022
,
Version 1.0.0
, https://github.com/frodal/Texture2Abaqus
46.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fracture
,
17
, pp.
389
407
.
47.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mater. Technol.
,
99
, pp.
2
15
.
48.
Morgeneyer
,
T. F.
,
Khadyko
,
M.
,
Buljac
,
A.
,
Helfen
,
L.
,
Hild
,
F.
,
Benallal
,
A.
,
Børvik
,
T.
, and
Hopperstad
,
O. S.
,
2021
, “
On Crystallographic Aspects of Heterogeneous Plastic Flow During Ductile Tearing: 3D Measurements and Crystal Plasticity Simulations for AA7075-T651
,”
Int. J. Plast.
,
144
, p.
103028
.
49.
Dowling
,
J. M.
, and
Martin
,
J. W.
,
1976
, “
The Influence of MN Additions on the Deformation Behaviour of an Al–Mg–Si Alloy
,”
Acta Metall.
,
24
, pp.
1147
1153
.
50.
Morgeneyer
,
T. F.
,
Starink
,
M. J.
,
Wang
,
S. C.
, and
Sinclair
,
I.
,
2008
, “
Quench Sensitivity of Toughness in an Al Alloy: Direct Observation and Analysis of Failure Initiation at the Precipitate-Free Zone
,”
Acta Mater.
,
56
, pp.
2872
2884
.
51.
Christiansen
,
E.
,
Marioara
,
C. D.
,
Marthinsen
,
K.
,
Hopperstad
,
O. S.
, and
Holmestad
,
R.
,
2018
, “
Lattice Rotations in Precipitate Free Zones in an Al–Mg–Si Alloy
,”
Mater. Charact.
,
144
, pp.
522
531
.
You do not currently have access to this content.