Abstract

We investigate the effect of defect geometry in dictating the sensitivity of the critical buckling conditions of spherical shells under external pressure loading. Specifically, we perform a comparative study between shells containing dimpled (inward) versus bumpy (outward) Gaussian defects. The former has become the standard shape in many recent shell-buckling studies, whereas the latter has remained mostly unexplored. We employ finite-element simulations, which were validated previously against experiments, to compute the knockdown factors for the two cases while systematically exploring the parameter space of the defect geometry. For the same magnitudes of the amplitude and angular width of the defect, we find that shells containing bumpy defects consistently exhibit significantly higher knockdown factors than shells with the more classic dimpled defects. Furthermore, the relationship of the knockdown as a function of the amplitude and the width of the defect is qualitatively different between the two cases, which also exhibit distinct post-buckling behavior. A speculative interpretation of the results is provided based on the qualitative differences in the mean-curvature profiles of the two cases.

References

1.
Niordson
,
F.
,
1985
,
Shell Theory
(
North-Holland Series in Applied Mathematics and Mechanics
),
Elsevier Science
,
Amsterdam
.
2.
Koiter
,
W. T.
,
1969
, “
The Nonlinear Buckling Behavior of a Complete Spherical Shell Under Uniform External Pressure, Parts I, II, III & IV
,”
Proc. Kon. Ned. Ak. Wet.
,
B72
(
1
), pp.
40
123
.
3.
Von Karman
,
T.
, and
Tsien
,
H.-S.
,
1939
, “
The Buckling of Spherical Shells by External Pressure
,”
J. Aeronaut. Sci.
,
7
(
2
), pp.
43
50
.
4.
Von Karman
,
T.
,
Dunn
,
L. G.
, and
Tsien
,
H.-S.
,
1940
, “
The Influence of Curvature on the Buckling Characteristics of Structures
,”
J. Aeronaut. Sci.
,
7
(
7
), pp.
276
289
.
5.
Koiter
,
W. T.
,
1945
, “
Over de stabiliteit van het elastisch evenwicht
,” Ph.D. thesis,
Delft University of Technology
,
Delft, The Netherlands
.
6.
Hutchinson
,
J.
, and
Koiter
,
W.
,
1970
, “
Postbuckling Theory
,”
ASME Appl. Mech. Rev.
,
23
(
12
), pp.
1353
1366
.
7.
Elishakoff
,
I.
,
2014
,
Resolution of the Twentieth Century Conundrum in Elastic Stability
,
World Scientific Publishing
,
Singapore
.
8.
Samuelson
,
L. A.
, and
Eggwertz
,
S.
,
2003
,
Shell Stability Handbook
,
Elsevier Applied Science
,
London
.
9.
Zoelly
,
R.
,
1915
, “
Ueber Ein Knickungsproblem An Der Kugelschale
,” Ph.D. thesis,
ETH Zürich
,
Zürich, Switzerland
.
10.
Seaman
,
L.
,
1962
, “
The Nature of Buckling in Thin Spherical Shells
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
11.
Kaplan
,
A.
, and
Fung
,
Y.
,
1954
, “
A Nonlinear Theory of Bending and Buckling of Thin Elastic Shallow Spherical Shells
,”
National Advisory Committee for Aeronautics
, WA, DC, Technical Note 3212.
12.
Tsien
,
H.-S.
,
1942
, “
A Theory for the Buckling of Thin Shells
,”
J. Aeronaut. Sci.
,
9
(
10
), pp.
373
384
.
13.
Krenzke
,
M.
, and
Kiernan
,
T.
,
1963
, “
Elastic Stability of Near-Perfect Shallow Spherical Shells
,”
AIAA J.
,
1
(
12
), pp.
2855
2857
.
14.
Babcock
,
C.
,
1983
, “
Shell Stability
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
935
940
.
15.
Carlson
,
R. L.
,
Sendelbeck
,
R. L.
, and
Hoff
,
N. J.
,
1967
, “
Experimental Studies of the Buckling of Complete Spherical Shells
,”
Exp. Mech.
,
7
(
7
), pp.
281
288
.
16.
Lee
,
A.
,
López Jiménez
,
F.
,
Marthelot
,
J.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2016
, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111005
.
17.
Bijlaard
,
P.
, and
Gallagher
,
R.
,
1960
, “
Elastic Instability of a Cylindrical Shell Under Arbitrary Circumferential Variation of Axial Stress
,”
J. Aerosp. Sci.
,
27
(
11
), pp.
854
858
.
18.
Kobayashi
,
S.
,
1968
, “
The Influence of the Boundary Conditions on the Buckling Load of Cylindrical Shells Under Axial Compression
,”
J. Jpn. Soc. Aeronaut. Eng.
,
16
(
170
), pp.
74
82
.
19.
Almroth
,
B. O.
,
1966
, “
Influence of Edge Conditions on the Stability of Axially Compressed Cylindrical Shells
,”
AIAA J.
,
4
(
1
), pp.
134
140
.
20.
Budiansky
,
B.
, and
Hutchinson
,
J. W.
,
1972
, “Buckling of Circular Cylindrical Shells Under Axial Compression,”
Contributions to the Theory of Aircraft Structures
, Delft University Press, Nijgh-Wolters-Noordhoff University Publishers, Rotterdam, The Netherlands, pp.
239
260
.
21.
Lee
,
A.
,
Brun
,
P.-T.
,
Marthelot
,
J.
,
Balestra
,
G.
,
Gallaire
,
F.
, and
Reis
,
P. M.
,
2016
, “
Fabrication of Slender Elastic Shells by the Coating of Curved Surfaces
,”
Nat. Commun.
,
7
, p.
11155
.
22.
Marthelot
,
J.
,
López Jiménez
,
F.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Buckling of a Pressurized Hemispherical Shell Subjected to a Probing Force
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121005
.
23.
Yan
,
D.
,
Pezzulla
,
M.
, and
Reis
,
P. M.
,
2020
, “
Buckling of Pressurized Spherical Shells Containing a Through-Thickness Defect
,”
J. Mech. Phys. Solids
,
138
(
26
), p.
103923
.
24.
Lee
,
A.
,
Yan
,
D.
,
Pezzulla
,
M.
,
Holmes
,
D. P.
, and
Reis
,
P. M.
,
2019
, “
Evolution of Critical Buckling Conditions in Imperfect Bilayer Shells Through Residual Swelling
,”
Soft. Matter.
,
15
(
30
), pp.
6134
6144
.
25.
Virot
,
E.
,
Kreilos
,
T.
,
Schneider
,
T. M.
, and
Rubinstein
,
S. M.
,
2017
, “
Stability Landscape of Shell Buckling
,”
Phys. Rev. Lett.
,
119
(
22
), p.
224101
.
26.
Gerasimidis
,
S.
,
Virot
,
E.
,
Hutchinson
,
J. W.
, and
Rubinstein
,
S. M.
,
2018
, “
On Establishing Buckling Knockdowns for Imperfection-Sensitive Shell Structures
,”
ASME J. Appl. Mech.
,
85
(
9
), p.
091010
.
27.
Fan
,
H.
,
2019
, “
Critical Buckling Load Prediction of Axially Compressed Cylindrical Shell Based on Non-Destructive Probing Method
,”
Thin-Walled Struct.
,
139
(
33
), pp.
91
104
.
28.
Lazarus
,
A.
,
Florijn
,
H. C. B.
, and
Reis
,
P. M.
,
2012
, “
Geometry-Induced Rigidity in Nonspherical Pressurized Elastic Shells
,”
Phys. Rev. Lett.
,
109
, p.
144301
.
29.
López Jiménez
,
F.
,
Marthelot
,
J.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Technical Brief: Knockdown Factor for the Buckling of Spherical Shells Containing Large-Amplitude Geometric Defects
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
034501
.
30.
Abbasi
,
A.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2021
, “
Probing the Buckling of Pressurized Spherical Shells
,”
J. Mech. Phys. Solids
,
155
(
21
), p.
104545
.
31.
Pezzulla
,
M.
, and
Reis
,
P. M.
,
2019
, “
A Weak Form Implementation of Nonlinear Axisymmetric Shell Equations With Examples
,”
ASME J. Appl. Mech.
,
86
(
12
), p.
124502
.
32.
Derveni
,
F.
,
Gueissaz
,
W.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2023
, “
Probabilistic Buckling of Imperfect Hemispherical Shells Containing a Distribution of Defects
,”
381
(
2244
). https://royalsocietypublishing.org/doi/full/10.1098/rsta.2022.0298
33.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2018
, “
Imperfections and Energy Barriers in Shell Buckling
,”
Int. J. Solids Struct.
,
148–149
, pp.
157
168
.
34.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2017
, “
Nonlinear Buckling Interaction for Spherical Shells Subject to Pressure and Probing Forces
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
061001
.
35.
2017
, “
Nonlinear Buckling Behaviour of Spherical Shells: Barriers and Symmetry-Breaking Dimples
,”
P. Roy. Soc. A-Math. Phy.
,
375
(
2093
), p.
20160154
.
36.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2018
, “
Imperfections and Energy Barriers in Shell Buckling
,”
Int. J. Solids Struct.
,
148
(
15
), pp.
157
168
.
37.
Homewood
,
R. H.
,
Brine
,
A. C.
, and
Johnson
,
A. E.
,
1961
, “
Experimental Investigation of the Buckling Instability of Monocoque Shells
,”
Exp. Mech.
,
1
(
3
), pp.
88
96
.
38.
Von Karman
,
T.
, and
Tsien
,
H.-S.
,
1941
, “
The Buckling of Thin Cylindrical Shells Under Axial Compression
,”
J. Aeronaut. Sci.
,
8
(
8
), pp.
303
312
.
39.
Groh
,
R.
, and
Pirrera
,
A.
,
2017
,
Exploring Islands of Stability in the Design Space of Cylindrical Shell Structures
,
CRC Press
,
Boca Raton, FL
.
40.
Groh
,
R. M.
, and
Pirrera
,
A.
,
2019
, “
Spatial Chaos as a Governing Factor for Imperfection Sensitivity in Shell Buckling
,”
Phys. Rev. E
,
100
(
3
), p.
032205
.
41.
Hutchinson
,
J. W.
,
2016
, “
Buckling of Spherical Shells Revisited
,”
P. Roy. Soc. A-Math. Phys.
,
472
(
2195
), p.
20160577
.
42.
Thompson
,
J. M. T.
, and
Sieber
,
J.
,
2016
, “
Shock-Sensitivity in Shell-Like Structures: With Simulations of Spherical Shell Buckling
,”
Int. J. Bif. Chaos
,
26
(
2
), p.
1630003
.
43.
Thompson
,
J. M. T.
,
Hutchinson
,
J. W.
, and
Sieber
,
J.
,
2017
, “
Probing Shells Against Buckling: a Nondestructive Technique for Laboratory Testing
,”
Int. J. Bif. Chaos
,
27
(
14
), p.
1730048
.
44.
Hutchinson
,
J. W.
,
Muggeridge
,
D. B.
, and
Tennyson
,
R. C.
,
1971
, “
Effect of a Local Axisymmetric Imperfection on the Buckling Behaviorof a Circular Cylindrical Shell Under Axial Compression
,”
AIAA J.
,
9
(
1
), pp.
48
52
.
45.
Paulose
,
J.
, and
Nelson
,
D. R.
,
2013
, “
Buckling Pathways in Spherical Shells With Soft Spots
,”
Soft. Matter.
,
9
(
34
), pp.
8227
8245
.
46.
Gerasimidis
,
S.
, and
Hutchinson
,
J.
,
2021
, “
Dent Imperfections in Shell Buckling: The Role of Geometry, Residual Stress, and Plasticity
,”
ASME J. Appl. Mech.
,
88
(
3
), p.
031007
.
47.
Koga
,
T.
, and
Hoff
,
N. J.
,
1969
, “
The Axisymmetric Buckling of Initially Imperfect Complete Spherical Shells
,”
Int. J. Solids Struct.
,
5
(
7
), pp.
679
697
.
48.
Riks
,
E.
,
1979
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
.
49.
Claxton
,
D.
,
2023
, “
Surface Curvature, Matlab Central File Exchange
,” https://www.mathworks.com/matlabcentral/fileexchange/11168-surface-curvature.
50.
Cohn-Vossen
,
S.
,
1929
, “
Unstarre Geschlossene Flachen
,”
Math. Ann.
,
102
(
1
), p.
10
.
51.
Audoly
,
B.
, and
Pomeau
,
Y.
,
2010
,
Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells
,
Oxford University Press
,
Oxford, UK
.
52.
Hilburger
,
M. W.
,
Nemeth
,
M. P.
, and
Starnes Jr
,
J. H.
,
2006
, “
Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures
,”
AIAA J.
,
44
(
3
), pp.
654
663
.
53.
Hilburger
,
M.
,
2012
, “
Developing the Next Generation Shell Buckling Design Factors and Technologies
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA
,
Honolulu, HI
,
Apr. 23–26
, p.
1686
.
54.
Castro
,
S. G.
,
Zimmermann
,
R.
,
Arbelo
,
M. A.
,
Khakimova
,
R.
,
Hilburger
,
M. W.
, and
Degenhardt
,
R.
,
2014
, “
Geometric Imperfections and Lower-Bound Methods Used to Calculate Knock-Down Factors for Axially Compressed Composite Cylindrical Shells
,”
Thin-Walled Struct.
,
74
(
26
), pp.
118
132
.
You do not currently have access to this content.