Abstract

Flexoelectricity, a remarkable size-dependent effect, means that strain gradients can give rise to electric polarization. This effect is particularly pronounced near defects within flexoelectric solids, where large strain gradients exist. A thorough understanding of the internal defects of flexoelectric devices and their surrounding multiphysics fields is crucial to comprehend their damage and failure mechanisms. Motivated by this, strain gradient elasticity theory is utilized to investigate the mechanical and electrical behaviors of flexoelectric solids with cylindrical cavities under biaxial tension. Closed-form solutions are obtained under the assumptions of plane strain and electrically impermeable defects. In particular, this study extends the Kirsch problem of classical elasticity theory to the theoretical framework of higher-order electroelasticity for the first time. Our research reveals that different length scale parameters of the strain gradient and bidirectional loading ratios significantly affect the hoop stress field, radial electric polarization field, and electric potential field near the inner cylindrical cavity of the flexoelectric solid. Furthermore, we validate our analytical solution by numerical verification using mixed finite elements. The congruence between the two methods confirms our analytical solution’s accuracy. The findings presented in this paper provide deeper insights into the internal defects of flexoelectric materials and can serve as a foundation for studying more complex defects in flexoelectric solids.

References

1.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
2.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y. -W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
.
3.
Wang
,
B.
,
Gu
,
Y.
,
Zhang
,
S.
, and
Chen
,
L.-Q.
,
2019
, “
Flexoelectricity in Solids: Progress
,”
Chall. Perspect. Prog. Mater. Sci.
,
106
, p.
100570
.
4.
Yudin
,
P. V.
, and
Tagantsev
,
A. K.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
.
5.
Li
,
Z.
,
Deng
,
Q.
, and
Shen
,
S.
,
2020
, “
Flexoelectric Energy Harvesting Using Circular Thin Membranes
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091004
.
6.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids. Struct.
,
51
(
18
), pp.
3218
3225
.
7.
Hu
,
S.
,
Li
,
H.
, and
Tzou
,
H.
,
2015
, “
Distributed Flexoelectric Structural Sensing: Theory and Experiment
,”
J. Sound Vib.
,
348
, pp.
126
136
.
8.
Huang
,
W.
,
Kwon
,
S.-R.
,
Zhang
,
S.
,
Yuan
,
F.-G.
, and
Jiang
,
X.
,
2014
, “
A Trapezoidal Flexoelectric Accelerometer
,”
J. Intell. Mater. Syst. Struct.
,
25
(
3
), pp.
271
277
.
9.
Kwon
,
S. R.
,
Huang
,
W. B.
,
Zhang
,
S. J.
,
Yuan
,
F. G.
, and
Jiang
,
X. N.
,
2013
, “
Flexoelectric Sensing Using a Multilayered Barium Strontium Titanate Structure
,”
Smart Mater. Struct.
,
22
(
11
), p.
115017
.
10.
Moura
,
A. G.
, and
Erturk
,
A.
,
2017
, “
Electroelastodynamics of Flexoelectric Energy Conversion and Harvesting in Elastic Dielectrics
,”
J. Appl. Phys.
,
121
(
6
), p.
064110
.
11.
Xie
,
J.
,
McAvoy
,
R.
, and
Linder
,
C.
,
2023
, “
An Analytical Model for Nanoscale Flexoelectric Doubly Curved Shells
,”
Math. Mech. Solids
, p.
10812865231186116
.
12.
Dai
,
L.
,
Guo
,
W.
, and
Wang
,
X.
,
2006
, “
Stress Concentration at an Elliptic Hole in Transversely Isotropic Piezoelectric Solids
,”
Int. J. Solids. Struct.
,
43
(
6
), pp.
1818
1831
.
13.
Linder
,
C.
,
2012
, “
An Analysis of the Exponential Electric Displacement Saturation Model in Fracturing Piezoelectric Ceramics
,”
Tech. Mech.
,
32
, pp.
53
69
.
14.
Linder
,
C.
, and
Miehe
,
C.
,
2012
, “
Effect of Electric Displacement Saturation on the Hysteretic Behavior of Ferroelectric Ceramics and the Initiation and Propagation of Cracks in Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
60
(
5
), pp.
882
903
.
15.
Linder
,
C.
,
2014
, “
A Complex Variable Solution Based Analysis of Electric Displacement Saturation for a Cracked Piezoelectric Material
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091006
.
16.
Guo
,
J.-H.
,
Lu
,
Z.-X.
,
Han
,
H.-T.
, and
Yang
,
Z.
,
2009
, “
Exact Solutions for Anti-Plane Problem of Two Asymmetrical Edge Cracks Emanating From an Elliptical Hole in a Piezoelectric Material
,”
Int. J. Solids. Struct.
,
46
(
21
), pp.
3799
3809
.
17.
Gao
,
C.-F.
, and
Fan
,
W.-X.
,
1999
, “
Exact Solutions for the Plane Problem in Piezoelectric Materials with an Elliptic or a Crack
,”
Int. J. Solids. Struct.
,
36
(
17
), pp.
2527
2540
.
18.
Zhang
,
T.-Y.
, and
Tong
,
P.
,
1996
, “
Fracture Mechanics for a Mode III Crack in a Piezoelectric Material
,”
Int. J. Solids. Struct.
,
33
(
3
), pp.
343
359
.
19.
Su
,
M.
, and
Xiao
,
J.
,
2022
, “
Model III Fracture Analysis of a Nanoscale Elliptical Hole With Four Cracks in One-Dimensional Hexagonal Piezoelectric Quasicrystals
,”
Eng. Fract. Mech.
,
274
, p.
108776
.
20.
Chung
,
M.
, and
Ting
,
T.
,
1996
, “
Piezoelectric Solid With an Elliptic Inclusion or Hole
,”
Int. J. Solids. Struct.
,
33
(
23
), pp.
3343
3361
.
21.
Sosa
,
H.
,
1991
, “
Plane Problems in Piezoelectric Media With Defects
,”
Int. J. Solids. Struct.
,
28
(
4
), pp.
491
505
.
22.
Guo
,
J.-H.
,
Lu
,
Z.-X.
,
Han
,
H.-T.
, and
Yang
,
Z.
,
2010
, “
The Behavior of Two Non-symmetrical Permeable Cracks Emanating From an Elliptical Hole in a Piezoelectric Solid
,”
Eur. J. Mech. A Solids
,
29
(
4
), pp.
654
663
.
23.
Askar
,
A.
,
Lee
,
P.
, and
Cakmak
,
A.
,
1971
, “
The Effect of Surface Curvature and Discontinuity on the Surface Energy Density and Other Induced Fields in Elastic Dielectrics With Polarization Gradient
,”
Int. J. Solids. Struct.
,
7
(
5
), pp.
523
537
.
24.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green’s Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
14
), p.
014110
.
25.
Mao
,
S.
, and
Purohit
,
P. K.
,
2015
, “
Defects in Flexoelectric Solids
,”
J. Mech. Phys. Solids
,
84
, pp.
95
115
.
26.
Tian
,
X.
,
Xu
,
M.
,
Zhou
,
H.
,
Deng
,
Q.
,
Li
,
Q.
,
Sladek
,
J.
, and
Sladek
,
V.
,
2022
, “
Analytical Studies on Mode III Fracture in Flexoelectric Solids
,”
ASME J. Appl. Mech.
,
89
(
4
), p.
041006
.
27.
Kirsch
,
C.
,
1898
, “
Die theorie der elastizitat und die bedurfnisse der festigkeitslehre
,”
Zeitschrift des Vereines Deutscher Ingenieure
,
42
, pp.
797
807
.
28.
Mao
,
S.
, and
Purohit
,
P. K.
,
2014
, “
Insights Into Flexoelectric Solids From Strain-Gradient Elasticity
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081004
.
29.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
, pp.
51
78
.
30.
Eshel
,
N.
, and
Rosenfeld
,
G.
,
1970
, “
Effects of Strain-Gradient on the Stress-Concentration at a Cylindrical Hole in a Field of Uniaxial Tension
,”
J. Eng. Math.
,
4
, pp.
97
111
.
31.
Mindlin
,
R.
, and
Eshel
,
N.
,
1968
, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids. Struct.
,
4
(
1
), pp.
109
124
.
32.
Assali
,
A.
,
Kanouni
,
F.
,
Laidoudi
,
F.
,
Arab
,
F.
, and
Bouslama
,
M.
,
2020
, “
Structural and Electromechanical Properties of Sr-Substituted Barium Titanate (BST) as Potential Material for High Performance Electroacoustic Devices
,”
Mater. Today Commun.
,
25
, p.
101643
.
33.
Hou
,
Y.
,
Tian
,
D.
, and
Chu
,
B.
,
2020
, “
Flexoelectric Response of (1-x)BaTiO3-xSrTiO3 Ceramics
,”
Ceram. Int.
,
46
(
9
), pp.
12928
12932
.
34.
Khakalo
,
S.
, and
Niiranen
,
J.
,
2017
, “
Gradient-Elastic Stress Analysis Near Cylindrical Holes in a Plane Under Bi-Axial Tension Fields
,”
Int. J. Solids. Struct.
,
110–111
, pp.
351
366
.
35.
Mao
,
S.
,
Purohit
,
P. K.
, and
Aravas
,
N.
,
2016
, “
Mixed Finite-Element Formulations in Piezoelectricity and Flexoelectricity
,”
Proc. Math. Phys. Eng. Sci.
,
472
(
2190
), p.
20150879
.
36.
Deng
,
F.
,
Deng
,
Q.
,
Yu
,
W.
, and
Shen
,
S.
,
2017
, “
Mixed Finite Elements for Flexoelectric Solids
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081004
.
37.
Phunpeng
,
V.
, and
Baiz
,
P.
,
2015
, “
Mixed Finite Element Formulations for Strain-Gradient Elasticity Problems Using the FEniCS Environment
,”
Finite Elem. Anal. Des.
,
96
, pp.
23
40
.
38.
Langtangen
,
H. P.
, and
Logg
,
A.
,
2017
,
Solving PDEs in Python
,
Springer
.
You do not currently have access to this content.