Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Recent experiments have found that a fiber-mass system can self-oscillate along the vertical direction under a non-uniform temperature field, which necessitates significant vertical space. To address the challenge in adapting to situations with limited vertical space, the current work introduces a self-oscillating string-mass system, comprising of a mass ball and a thermally responsive liquid crystal elastomer string exposed to a constant gradient temperature. By employing theoretical modeling and numerical simulation, we have identified two motion regimes of the system, namely, the static regime and the self-oscillation regime, and elucidated the mechanism of self-oscillation. Utilizing the analytical method, we derived the expressions for bifurcation point, amplitude, and frequency of the self-oscillation, and investigated the impact of system parameters on these aspects, which were verified by numerical solutions. Compared to a fiber-mass system, the string-mass system has superior stability to deal with small horizontal disturbances, can amplify its amplitude and frequency limited by small thermal deformation of material, and saves a significant amount of vertical space. Given these attributes, such self-oscillating string-mass system presents novel possibilities for designing energy harvesters, active machinery, and soft robots.

References

1.
Jenkins
,
A.
,
2013
, “
Self-Oscillation
,”
Phys. Rep.
,
525
(
2
), pp.
167
222
.
2.
Fu
,
M.
,
Burkart
,
T.
,
Maryshev
,
I.
,
Franquelim
,
H. G.
,
Merino-Salomón
,
A.
,
Reverte-López
,
M.
,
Frey
,
E.
, and
Schwille
,
P.
,
2023
, “
Mechanochemical Feedback Loop Drives Persistent Motion of Liposomes
,”
Nat. Phys.
,
19
(
8
), pp.
1211
1218
.
3.
Zheng
,
E.
,
Brandenbourger
,
M.
,
Robinet
,
L.
,
Schall
,
P.
,
Lerner
,
E.
, and
Coulais
,
C.
,
2023
, “
Self-oscillation and Synchronization Transitions in Elastoactive Structures
,”
Phys. Rev. Lett.
,
130
(
17
), p.
178202
.
4.
Wang
,
X.
, and
Ho
,
G. W.
,
2022
, “
Design of Untethered Soft Material Micromachine for Life-Like Locomotion
,”
Mater. Today
,
53
(
14
), pp.
197
216
.
5.
Ma
,
X.
,
Song
,
Y.
,
Cao
,
P.
,
Li
,
J.
, and
Zhang
,
Z.
,
2023
, “
Self-excited Vibration Suppression of a Spline-Shafting System Using a Nonlinear Energy Sink
,”
Int. J. Mech. Sci.
,
245
(
2
), p.
108105
.
6.
Fang
,
X.
,
Lou
,
J.
,
Wang
,
J.
,
Chuang
,
K. C.
,
Wu
,
H.
, and
Huang
,
Z.
,
2024
, “
A Self-excited Bistable Oscillator With a Light-Powered Liquid Crystal Elastomer
,”
Int. J. Mech. Sci.
,
271
, p.
109124
.
7.
Tang
,
Y.
,
Li
,
M.
,
Wang
,
T.
,
Dong
,
X.
,
Hu
,
W.
, and
Sitti
,
M.
,
2022
, “
Wireless Miniature Magnetic Phase-Change Soft Actuators
,”
Adv. Mater.
,
34
(
40
), p.
2204185
.
8.
Wang
,
M.
,
Cheng
,
Z.
,
Zuo
,
B.
,
Chen
,
X.
,
Huang
,
S.
, and
Yang
,
H.
,
2020
, “
Liquid Crystal Elastomer Electric Locomotives
,”
ACS Macro Lett.
,
9
(
6
), pp.
860
865
.
9.
Maeda
,
S.
,
Hara
,
Y.
,
Sakai
,
T.
,
Yoshida
,
R.
, and
Hashimoto
,
S.
,
2007
, “
Self-walking Gel
,”
Adv. Mater.
,
19
(
21
), pp.
3480
3484
.
10.
Zhao
,
D.
, and
Liu
,
Y.
,
2019
, “
Photomechanical Vibration Energy Harvesting Based on Liquid Crystal Elastomer Cantilever
,”
Smart Mater. Struct.
,
28
(
7
), p.
075017
.
11.
Chun
,
S.
,
Pang
,
C.
, and
Cho
,
S. B.
,
2020
, “
A Micropillar-Assisted Versatile Strategy for Highly Sensitive and Efficient Triboelectric Energy Generation Under In-Plane Stimuli
,”
Adv. Mater.
,
32
(
2
), p.
1905539
.
12.
White
,
T. J.
, and
Broer
,
D. J.
,
2015
, “
Programmable and Adaptive Mechanics With Liquid Crystal Polymer Networks and Elastomers
,”
Nat. Mater.
,
14
(
11
), pp.
1087
1098
.
13.
He
,
Q.
,
Yin
,
R.
,
Hua
,
Y.
,
Jiao
,
W.
,
Mo
,
C.
,
Shu
,
H.
, and
Raney
,
J. R.
,
2023
, “
A Modular Strategy for Distributed, Embodied Control of Electronics-Free Soft Robots
,”
Sci. Adv.
,
9
(
27
), p.
eade9247
.
14.
Yang
,
L.
,
Miao
,
J.
,
Li
,
G.
,
Ren
,
R.
,
Zhang
,
T.
,
Guo
,
D.
,
Tang
,
Y.
,
Shang
,
W.
, and
Shen
,
Y.
,
2022
, “
Soft Tunable Gelatin Robot With Insect-Like Claw for Grasping, Transportation, and Delivery
,”
ACS Appl. Polym. Mater.
,
4
(
8
), pp.
5431
5440
.
15.
Yang
,
L.
,
Chang
,
L.
,
Hu
,
Y.
,
Huang
,
M.
,
Ji
,
Q.
,
Lu
,
P.
,
Liu
,
J.
,
Chen
,
W.
, and
Wu
,
Y.
,
2020
, “
An Autonomous Soft Actuator With Light-Driven Self-sustained Wavelike Oscillation for Phototactic Self-locomotion and Power Generation
,”
Adv. Funct. Mater.
,
30
(
15
), p.
1908842
.
16.
Wu
,
J.
,
Yao
,
S.
,
Zhang
,
H.
,
Man
,
W.
,
Bai
,
Z.
,
Zhang
,
F.
,
Wang
,
X.
,
Fang
,
D.
, and
Zhang
,
Y.
,
2021
, “
Liquid Crystal Elastomer Metamaterials With Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration
,”
Adv. Mater.
,
33
(
45
), p.
2170356
.
17.
Boissonade
,
J.
, and
Kepper
,
P. D.
,
2011
, “
Multiple Types of Spatio-temporal Oscillations Induced by Differential Diffusion in the Landolt Reaction
,”
Phys. Chem. Chem. Phys.
,
13
(
9
), pp.
4132
4137
.
18.
Zhao
,
Y.
,
Xuan
,
C.
,
Qian
,
X.
,
Alsaid
,
Y.
,
Hua
,
M.
,
Jin
,
L.
, and
He
,
X.
,
2019
, “
Soft Phototactic Swimmer Based on Self-sustained Hydrogel Oscillator
,”
Sci. Robot.
,
4
(
33
), p.
eaax7112
.
19.
Yang
,
X.
,
Shi
,
W.
,
Chen
,
Z.
,
Du
,
M.
,
Xiao
,
S.
,
Qu
,
S.
, and
Li
,
C.
,
2023
, “
Light-Fueled Nonequilibrium and Adaptable Hydrogels for Highly Tunable Autonomous Self-oscillating Functions
,”
Adv. Funct. Mater.
,
33
(
24
), p.
2214394
.
20.
Shen
,
Q.
,
Trabia
,
S.
,
Stalbaum
,
T.
,
Palmre
,
V.
,
Kim
,
K.
, and
Oh
,
I.
,
2016
, “
A Multiple-Shape Memory Polymer-Metal Composite Actuator Capable of Programmable Control, Creating Complex 3D Motion of Bending, Twisting, and Oscillation
,”
Sci. Rep.
,
6
(
1
), p.
24462
.
21.
Yang
,
H.
,
Zhang
,
C.
,
Chen
,
B.
,
Wang
,
Z.
,
Xu
,
Y.
, and
Xiao
,
R.
,
2023
, “
Bioinspired Design of Stimuli-Responsive Artificial Muscles With Multiple Actuation Modes
,”
Smart Mater. Struct.
,
32
(
8
), p.
085023
.
22.
Lu
,
D.
,
Wang
,
L.
,
Chen
,
B.
,
Xu
,
Z.
,
Wang
,
Z.
, and
Xiao
,
R.
,
2023
, “
Shape Memory Behaviors of 3D Printed Liquid Crystal Elastomers
,”
Soft Sci.
,
3
(
1
), p.
5
.
23.
Xu
,
P.
,
Chen
,
Y.
,
Wu
,
H.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Chaotic Motion Behaviors of Liquid Crystal Elastomer Pendulum Under Periodic Illumination
,”
Results Phys.
,
56
, p.
107332
.
24.
Wu
,
H.
,
Dai
,
Y.
,
Li
,
K.
, and
Xu
,
P.
,
2024
, “
Theoretical Study of Chaotic Jumping of Liquid Crystal Elastomer Ball Under Periodic Illumination
,”
Nonlinear Dyn.
,
112
(
10
), pp.
7799
7815
.
25.
Sun
,
J.
,
Hu
,
W.
,
Zhang
,
L.
,
Lan
,
R.
,
Yang
,
H.
, and
Yang
,
D.
,
2021
, “
Light-Driven Self-oscillating Behavior of Liquid-Crystalline Networks Triggered by Dynamic Isomerization of Molecular Motors
,”
Adv. Funct. Mater.
,
31
(
33
), p.
2103311
.
26.
Li
,
S.
,
Bai
,
H.
,
Liu
,
Z.
,
Zhang
,
X.
,
Huang
,
C.
,
Wiesner
,
L. W.
,
Silberstein
,
M.
, and
Shepherd
,
R. F.
,
2021
, “
Digital Light Processing of Liquid Crystal Elastomers for Self-sensing Artificial Muscles
,”
Sci. Adv.
,
7
(
30
), p.
eabg3677
.
27.
Hua
,
M.
,
Kim
,
C.
,
Du
,
Y.
,
Wu
,
D.
,
Bai
,
R.
, and
He
,
X.
,
2021
, “
Swaying Gel: Chemo-mechanical Self-oscillation Based on Dynamic Buckling
,”
Matter
,
4
(
3
), pp.
1029
1041
.
28.
Zhao
,
T.
,
Fan
,
Y.
, and
Lv
,
J.
,
2022
, “
Photomorphogenesis of Diverse Autonomous Traveling Waves in a Monolithic Soft Artificial Muscle
,”
ACS Appl. Mater. Interfaces
,
14
(
20
), pp.
23839
23849
.
29.
Wu
,
H.
,
Zhao
,
C.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Light-Fueled Self-fluttering Aircraft With a Liquid Crystal Elastomer-Based Engine
,”
Commun. Nonlinear Sci. Numer. Simul.
,
133
, p.
107942
.
30.
Graeber
,
G.
,
Regulagadda
,
K.
,
Hodel
,
P.
,
Küttel
,
C.
,
Landolf
,
D.
,
Schutzius
,
T.
, and
Poulikakos
,
D.
,
2021
, “
Leidenfrost Droplet Trampolining
,”
Nat. Commun.
,
12
(
1
), pp.
1
7
.
31.
Kim
,
Y.
,
van den Berg
,
J.
, and
Crosby
,
A. J.
,
2021
, “
Autonomous Snapping and Jumping Polymer Gels
,”
Nat. Mater.
,
20
(
12
), pp.
1965
1701
.
32.
Hu
,
J.
,
Nie
,
Z.
,
Wang
,
M.
,
Liu
,
Z.
,
Huang
,
S.
, and
Yang
,
H.
,
2023
, “
Springtail-Inspired Light-Driven Soft Jumping Robots Based on Liquid Crystal Elastomers With Monolithic Three-Leaf Panel Fold Structure
,”
Angew. Chem. Int. Ed.
,
62
(
9
), p.
e20230408
.
33.
Zhou
,
X.
,
Chen
,
G.
,
Jin
,
B.
,
Feng
,
H.
,
Chen
,
Z.
,
Fang
,
M.
,
Yang
,
B.
,
Xiao
,
R.
,
Xie
,
T.
, and
Zheng
,
N.
,
2024
, “
Multimodal Autonomous Locomotion of Liquid Crystal Elastomer Soft Robot
,”
Adv. Sci.
,
23
(
11
), p.
2402358
.
34.
Zhao
,
Y.
,
Chi
,
Y.
,
Hong
,
Y.
,
Li
,
Y.
,
Yang
,
S.
, and
Yin
,
J.
,
2022
, “
Twisting for Soft Intelligent Autonomous Robot in Unstructured Environments
,”
Proc. Natl. Acad. Sci. USA
,
119
(
22
), p.
e2200265119
.
35.
Lv
,
X.
,
Yu
,
M.
,
Wang
,
W.
, and
Yu
,
H.
,
2021
, “
Photothermal Pneumatic Wheel With High Loadbearing Capacity
,”
Compos. Commun.
,
24
(
12
), p.
100651
.
36.
Yu
,
Y.
,
Hu
,
H.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Modeling the Light-Powered Self-Rotation of a Liquid Crystal Elastomer Fiber-Based Engine
,”
Phys. Rev. E
,
109
(
3
), p.
034701
.
37.
Yu
,
Y.
,
Hu
,
H.
,
Wu
,
H.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
A Light-Powered Self-rotating Liquid Crystal Elastomer Drill
,”
Heliyon
,
10
(
5
), p.
e27748
.
38.
Qiu
,
Y.
,
Wu
,
H.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Behavior Prediction and Inverse Design for Self-rotating Skipping Ropes Based on Random Forest and Neural Network
,”
Mathematics
,
12
(
7
), p.
2921584
.
39.
Liu
,
C.
,
Li
,
K.
,
Yu
,
X.
,
Yang
,
J.
, and
Wang
,
J.
,
2024
, “
A Multimodal Self-propelling Tensegrity Structure
,”
Adv. Mater.
,
36
(
25
).
40.
Zuo
,
W.
,
Sun
,
T.
,
Dai
,
Y.
,
Li
,
K.
, and
Zhao
,
J.
,
2023
, “
Light-Powered Self-propelled Trolley With a Liquid Crystal Elastomer Pendulum Motor
,”
Int. J. Solids Struct.
,
285
, p.
112500
.
41.
Ge
,
D.
,
Dai
,
Y.
, and
Li
,
K.
,
2023
, “
Light-Powered Self-spinning of a Button Spinner
,”
Int. J. Mech. Sci.
,
238
, p.
107824
.
42.
Li
,
Z.
,
Myung
,
N. V.
, and
Yin
,
Y.
,
2021
, “
Light-Powered Soft Steam Engines for Self-adaptive Oscillation and Biomimetic Swimming
,”
Sci. Robot.
,
6
(
61
), p.
eabi4523
.
43.
Liang
,
X.
,
Ding
,
J.
, and
Li
,
K.
,
2023
, “
Light-Propelled Self-swing of a Liquid Crystal Elastomer Balloon
,”
Int. J. Appl. Mech.
,
15
(
6
), p.
2350049
.
44.
Bai
,
C.
,
Kang
,
J.
, and
Wang
,
Y.
,
2024
, “
Light-Induced Motion of Three-Dimensional Pendulum With Liquid Crystal Elastomeric Fiber
,”
Int. J. Mech. Sci.
,
266
, p.
108911
.
45.
Hou
,
W.
,
Wang
,
J.
, and
Lv
,
J.
,
2023
, “
Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles
,”
Adv. Mater.
,
34
(
16
), p.
2211800
.
46.
He
,
Q.
,
Wang
,
Z.
,
Wang
,
Y.
,
Wang
,
Z.
,
Li
,
C.
,
Annapooranan
,
R.
,
Zeng
,
J.
,
Chen
,
R.
, and
Cai
,
S.
,
2021
, “
Electrospun Liquid Crystal Elastomer Microfiber Actuator
,”
Sci. Robot.
,
6
(
57
), p.
eabi9704
.
47.
Liu
,
J.
,
Shi
,
F.
,
Song
,
W.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Modeling of Self-oscillating Flexible Circuits Based on Liquid Crystal Elastomers
,”
Int. J. Mech. Sci.
,
270
, p.
109099
.
48.
Ge
,
D.
, and
Li
,
K.
,
2022
, “
Pulsating Self-snapping of a Liquid Crystal Elastomer Bilayer Spherical Shell Under Steady Illumination
,”
Int. J. Mech. Sci.
,
233
, p.
107646
.
49.
Zhao
,
Y.
,
Hong
,
Y.
,
Qi
,
F.
,
Chi
,
Y.
,
Su
,
H.
, and
Yin
,
J.
,
2023
, “
Self-sustained Snapping Drives Autonomous Dancing and Motion in Free-Standing Wavy Rings
,”
Adv. Mater.
,
35
(
7
), p.
2207372
.
50.
Kim
,
D.
,
Lee
,
Y.
,
Kim
,
Y. B.
,
Wang
,
Y.
, and
Yang
,
S.
,
2023
, “
Autonomous, Untethered Gait-Like Synchronization of Lobed Loops Made From Liquid Crystal Elastomer Fibers Via Spontaneous Snap-Through
,”
Sci. Adv.
,
9
(
20
), p.
258762982
.
51.
Hu
,
Z.
,
Li
,
Y.
, and
Lv
,
J.
,
2021
, “
Phototunable Self-oscillating System Driven by a Self-winding Fiber Actuator
,”
Nat. Commun.
,
12
(
1
), p.
3211
.
52.
Li
,
K.
, and
Cai
,
S.
,
2016
, “
Modeling of Light-Driven Bending Vibration of a Liquid Crystal Elastomer Beam
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
031009
.
53.
Xu
,
T.
,
Pei
,
D.
,
Yu
,
S.
,
Zhang
,
X.
,
Yi
,
M.
, and
Li
,
C.
,
2021
, “
Design of MXene Composites With Biomimetic Rapid and Self-oscillating Actuation Under Ambient Circumstances
,”
ACS Appl. Mater. Interfaces
,
13
(
27
), pp.
31978
31985
.
54.
Vantomme
,
G.
,
Elands
,
L. C. M.
,
Gelebart
,
A. H.
,
Meijer
,
E. W.
,
Pogromsky
,
A. Y.
,
Nijmeijer
,
H.
, and
Broer
,
D. J.
,
2021
, “
Coupled Liquid Crystalline Oscillators in Huygens’ Synchrony
,”
Nat. Mater.
,
20
(
12
), pp.
1702
1706
.
55.
Wu
,
H.
,
Zhang
,
B.
, and
Li
,
K.
,
2024
, “
Synchronous Behaviors of Three Coupled Liquid Crystal Elastomer-Based Spring Oscillators Under Linear Temperature Fields
,”
Phys. Rev. E
,
109
(
2
), p.
024701
.
56.
Tong
,
F.
,
Kitagawa
,
D.
,
Bushnak
,
I.
,
Al-Kaysi
,
R. O.
, and
Bardeen
,
C. J.
,
2021
, “
Light-Powered Autonomous Flagella-Like Motion of Molecular Crystal Microwires
,”
Angew. Chem. Int. Ed.
,
60
(
5
), pp.
2414
2423
.
57.
Nie
,
Z.
,
Wang
,
M.
,
Huang
,
S.
,
Liu
,
Z.
, and
Yang
,
H.
,
2023
, “
Multimodal Self-sustainable Autonomous Locomotions of Light-Driven Seifert Ribbon Actuators Based on Liquid Crystal Elastomers
,”
Angew. Chem. Int. Ed.
,
62
(
25
), p.
e202304081
.
58.
Baumann
,
A.
,
Sánchez-Ferrer
,
A.
,
Jacomine
,
L.
,
Martinoty
,
P.
,
Houerou
,
V.
,
Ziebert
,
F.
, and
Kulić
,
I.
,
2018
, “
Motorizing Fibers With Geometric Zero-Energy Modes
,”
Nat. Mater.
,
17
(
6
), pp.
523
527
.
59.
Wang
,
Y.
,
Liu
,
J.
, and
Yang
,
S.
,
2022
, “
Multi-Functional Liquid Crystal Elastomer Composites
,”
Appl. Phys. Rev.
,
9
, p.
011301
.
60.
Li
,
J.
,
Mou
,
L.
,
Liu
,
Z.
,
Zhou
,
X.
, and
Chen
,
Y.
,
2022
, “
Oscillating Light Engine Realized by Photothermal Solvent Evaporation
,”
Nat. Commun.
,
13
(
1
), p.
5621
.
61.
Thekdi
,
A.
, and
Nimbalkar
,
S. U.
,
2015
,
Industrial Waste Heat Recovery-Potential Applications, Available Technologies and Crosscutting R & D Opportunities (No. ORNL/TM-2014/622)
,
Oak Ridge National Lab. (ORNL)
,
Oak Ridge, TN
.
62.
Herbert
,
K. M.
,
Fowler
,
H. E.
,
McCracken
,
J. M.
,
Schlafmann
,
K. R.
,
Koch
,
J. A.
, and
White
,
T. J.
,
2021
, “
Synthesis and Alignment of Liquid Crystalline Elastomers
,”
Nat. Rev. Mater.
,
7
(
1
), pp.
1
16
.
63.
Wang
,
L.
,
Wei
,
Z.
,
Xu
,
Z.
,
Yu
,
Q.
,
Wu
,
Z.
,
Wang
,
Z.
,
Qian
,
J.
, and
Xiao
,
R.
,
2023
, “
Shape Morphing of 3D Printed Liquid Crystal Elastomer Structures With Precuts
,”
ACS Appl. Polym. Mater.
,
5
(
9
), pp.
7477
7484
.
64.
Chen
,
B.
,
Liu
,
C.
,
Xu
,
Z.
,
Wang
,
Z.
, and
Xiao
,
R.
,
2024
, “
Modeling the Thermo-responsive Behaviors of Polydomain and Monodomain Nematic Liquid Crystal Elastomers
,”
Mech. Mater.
,
188
, p.
104838
.
65.
Nemati
,
Y.
,
Deng
,
Z.
,
Pi
,
H.
,
Guo
,
H.
,
Zhang
,
H.
,
Priimagi
,
A.
, and
Zeng
,
H.
,
2024
, “
A Scalable, Incoherent-Light-Powered, Omnidirectional Self-oscillator
,”
Adv. Intell. Syst.
,
6
(
2
), p.
202300054
.
66.
Wei
,
Z.
,
Wang
,
P.
, and
Bai
,
R.
,
2024
, “
Thermomechanical Coupling in Polydomain Liquid Crystal Elastomers
,”
ASME J. Appl. Mech.
,
91
(
2
), p.
021001
.
67.
Wang
,
Y.
,
Dang
,
A.
,
Zhang
,
Z.
,
Yin
,
R.
,
Gao
,
Y.
,
Feng
,
L.
, and
Shu
,
Y.
,
2020
, “
Repeatable and Reprogrammable Shape Morphing From Photoresponsive Gold Nanorod/Liquid Crystal Elastomers
,”
Adv. Mater.
,
32
(
46
), p.
2004270
.
68.
Wang
,
Y.
,
Yin
,
R.
,
Jin
,
L.
,
Liu
,
M.
,
Gao
,
Y.
,
Raney
,
J.
, and
Yang
,
S.
,
2023
, “
3D-Printed Photoresponsive Liquid Crystal Elastomer Composites for Free-Form Actuation
,”
Adv. Funct. Mater.
,
33
(
4
), p.
2210614
.
69.
Lu
,
H.
,
Zou
,
Z.
,
Wu
,
X.
,
Shi
,
C.
, and
Xiao
,
J.
,
2021
, “
Fabrication and Characterization of Highly Deformable Artificial Muscle Fibers Based on Liquid Crystal Elastomers
,”
ASME J. Appl. Mech.
,
88
(
4
), p.
041003
.
70.
Liu
,
Y.
,
Wu
,
Y.
,
Liang
,
H.
,
Xu
,
H.
,
Wei
,
Y.
, and
Ji
,
Y.
,
2023
, “
Rewritable Electrically Controllable Liquid Crystal Actuators
,”
Adv. Funct. Mater.
,
33
(
44
), p.
202302110
.
71.
Zhang
,
J.
,
Guo
,
Y.
,
Hu
,
W.
,
Soon
,
R. H.
,
Davidson
,
Z. S.
, and
Sitti
,
M.
,
2021
, “
Liquid Crystal Elastomer-Based Magnetic Composite Films for Reconfigurable Shape-Morphing Soft Miniature Machines
,”
Adv. Mater.
,
33
(
8
), p.
2006191
.
72.
Sun
,
Y.
,
Wang
,
L.
,
Zhu
,
Z.
,
Li
,
X.
,
Sun
,
H.
,
Zhao
,
Y.
,
Peng
,
C.
,
Liu
,
J.
,
Zhang
,
S.
, and
Li
,
M.
,
2023
, “
3D-Printed Ferromagnetic Liquid Crystal Elastomer With Programmed Dual-Anisotropy and Multi-responsiveness
,”
Adv. Mater.
,
35
(
45
), p.
202302824
.
73.
Yakacki
,
C. M.
,
Saed
,
M.
,
Nair
,
D. P.
,
Gong
,
T.
,
Reedc
,
S. M.
, and
Bowmanb
,
C. N.
,
2015
, “
Tailorable and Programmable Liquid-Crystalline Elastomers Using a Two-Stage Thiol-Acrylate Reaction
,”
RSC Adv.
,
5
(
25
), pp.
18997
19001
.
74.
Li
,
K.
,
Du
,
C.
,
He
,
Q.
, and
Cai
,
S.
,
2022
, “
Thermally Driven Self-oscillation of an Elastomer Fiber With a Hanging Weight
,”
Extreme Mech. Lett.
,
50
, p.
101547
.
75.
Wu
,
H.
,
Lou
,
J.
,
Dai
,
Y.
,
Zhang
,
B.
, and
Li
,
K.
,
2024
, “
Bifurcation Analysis in Liquid Crystal Elastomer Spring Self-oscillators Under Linear Light Fields
,”
Chaos Solitons Fract.
,
181
, p.
114587
.
76.
Wu
,
H.
,
Lou
,
J.
,
Zhang
,
B.
,
Dai
,
Y.
, and
Li
,
K.
,
2024
, “
Stability Analysis of a Liquid Crystal Elastomer Self-oscillator Under a Linear Temperature Field
,”
Appl. Math. Mech.
,
45
(
2
), pp.
337
354
.
77.
Parrany
,
M.
,
2018
, “
Nonlinear Light-Induced Vibration Behavior of Liquid Crystal Elastomer Beam
,”
Int. J. Mech. Sci.
,
136
, pp.
179
187
.
78.
Heller
,
M. D.
,
2005
, “
Hurwitz-Based Stability Criteria for Bounded Nonlinear Time-Varying Systems
,”
IEEE ICCA
,
2
, pp.
942
947
.
79.
Song
,
X.
,
Sederberg
,
T. W.
,
Zheng
,
J.
,
Farouki
,
R. T.
, and
Hass
,
J.
,
2004
, “
Linear Perturbation Methods for Topologically Consistent Representations of Free-Form Surface Intersections
,”
Comput. Aided Geom. Des.
,
21
(
3
), pp.
303
319
.
80.
Fan
,
S.
, and
Shen
,
Y.
,
2022
, “
Extension of Multi-scale Method and Its Application to Nonlinear Viscoelastic System”
,”
J. Theor. Appl. Mech. (Chinese Edition)
,
54
(
2
), pp.
495
502
.
81.
Li
,
J.
,
Zhang
,
J.
,
Zhang
,
W.
, and
Liu
,
X.
,
2004
, “
Multi-Scale Methodology for Complex Systems
,”
Chem. Eng. Sci.
,
59
(
8–9
), pp.
1687
1700
.
You do not currently have access to this content.