Abstract

We investigate finite plane deformations of an elliptic rigid inclusion embedded in a soft matrix that is made of a particular class of harmonic-type hyperelastic materials. The inclusion is assumed to be perfectly bonded to the matrix, which is subjected to a constant remote in-plane loading. Utilizing the Cauchy integral techniques associated with conformal mappings, we derive closed-form solutions for the full-field deformation, Piola stress, and Cauchy stress in the entire matrix. Numerical examples are presented to illustrate the current solutions in comparison with those established from linear elasticity theory. We find that in terms of the Cauchy stress around the inclusion, the maximum normal stress component always appears at the endpoints of the major axis of the inclusion, irrespective of the magnitude of the remote loading, while the maximum hoop stress component occurs not exactly at the above-mentioned endpoints when the remote loading exceeds a certain value. In particular, we identify an exact explicit formula for determining the relative rotation of the inclusion during deformation induced by a remote uniaxial loading of arbitrarily given magnitude and direction.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. A.
,
241
(
1226
), pp.
376
396
.
2.
Eshelby
,
J. D.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. A.
,
252
(
1271
), pp.
561
569
.
3.
Gong
,
S. X.
, and
Meguid
,
S. A.
,
1992
, “
A General Treatment of the Elastic Field of an Elliptical Inhomogeneity Under Antiplane Shear
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S131
S135
.
4.
Meisner
,
M. J.
, and
Kouris
,
D. A.
,
1995
, “
Interaction of Two Elliptic Inclusions
,”
Int. J. Solids Struct.
,
32
(
3–4
), pp.
451
466
.
5.
Luo
,
J. C.
, and
Gao
,
C. F.
,
2009
, “
Faber Series Method for Plane Problems of an Arbitrarily Shaped Inclusion
,”
Acta Mech.
,
208
(
3
), pp.
133
145
.
6.
Muskhelishvili
,
N. I.
,
1975
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen
.
7.
Misseroni
,
D.
,
Corso
,
F. D.
,
Shahzad
,
S.
, and
Bigoni
,
D.
,
2014
, “
Stress Concentration Near Stiff Inclusions: Validation of Rigid Inclusion Model and Boundary Layers by Means of Photoelasticity
,”
Eng. Fract. Mech.
,
121–122
, pp.
87
97
.
8.
Zou
,
W. N.
, and
He
,
Q. C.
,
2018
, “
Revisiting the Problem of a 2D Infinite Elastic Isotropic Medium With a Rigid Inclusion or a Cavity
,”
Int. J. Eng. Sci.
,
126
, pp.
68
96
.
9.
Lim
,
H. R.
,
Kim
,
H. S.
,
Qazi
,
R.
,
Kwon
,
Y. T.
,
Jeong
,
J. W.
, and
Yeo
,
W. H.
,
2020
, “
Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment
,”
Adv. Mater.
,
32
(
15
), p.
1901924
.
10.
Yin
,
L.
,
Lv
,
J.
, and
Wang
,
J.
,
2020
, “
Structural Innovations in Printed, Flexible, and Stretchable Electronics
,”
Adv. Mater. Technol.
,
5
(
11
), p.
2000694
.
11.
Kim
,
D. H.
,
Lu
,
N. S.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S.
,
Wu
,
J.
, et al
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
12.
Zhang
,
H.
,
Yang
,
W.
, and
Xu
,
B.
,
2020
, “
Rotation Mechanics of Optical Scatters in Stretchable Metasurfaces
,”
Int. J. Solids Struct.
,
191–192
, pp.
566
576
.
13.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
, and
Wang
,
M.
,
2011
, “
Multigait Soft Robot
,”
PNAS
,
108
(
51
), pp.
20400
20403
.
14.
Zeng
,
X. W.
,
Li
,
S. F.
, and
Ren
,
B.
,
2012
,
Advances in Soft Matter Mechanics
,
Springer
,
Berlin
, pp.
95
115
.
15.
Yang
,
W.
,
Liu
,
Q.
,
Yue
,
Z.
,
Li
,
X.
,
Xu
,
B.
,
2017
, “
Rotation of Hard Particles in a Soft Matrix
,”
J. Mech. Phys. Solids
,
101
, pp.
285
310
.
16.
John
,
F.
,
1960
, “
Plane Strain Problems for a Perfectly Elastic Material of Harmonic Type
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
239
296
.
17.
Varley
,
E.
, and
Cumberbatch
,
E.
,
1980
, “
Finite Deformations of Elastic Materials Surrounding Cylindrical Holes
,”
J. Elasticity
,
10
(
4
), pp.
341
405
.
18.
Ru
,
C. Q.
,
2002
, “
On Complex-Variable Formulation for Finite Plane Elastostatics of Harmonic Materials
,”
Acta Mech.
,
156
(
3–4
), pp.
219
234
.
19.
Ru
,
C. Q.
,
Schiavone
,
P.
,
Sudak
,
L. J.
, and
Mioduchowskia
,
A.
,
2005
, “
Uniformity of Stresses Inside an Elliptic Inclusion in Finite Plane Elastostatics
,”
Int. J. Nonlinear Mech.
,
40
(
2–3
), pp.
281
287
.
20.
Kim
,
C. I.
, and
Schiavone
,
P.
,
2009
, “
An Elliptic Inhomogeneity Subjected to a General Class of Nonuniform Remote Loadings in Finite Elasticity
,”
Math. Mech. Solids
,
14
(
4
), pp.
421
442
.
21.
Miao
,
K.
,
Hu
,
H.
,
Dai
,
M.
, and
Gao
,
C. F.
,
2023
, “
Rigid Inclusion in an Elastic Matrix Revisited
,”
Arch. Appl. Mech.
,
93
(
3
), pp.
1189
1199
.
You do not currently have access to this content.