Abstract

We investigate the concurrent three-dimensional deformations of fiber-reinforced composite sheets subjected to out-of-plane bending moments via a continuum model, where we invoke the neo-Hookean strain energy model for the matrix material of fiber-reinforced composite, and assimilate the strain energy of fiber reinforcements into the matrix material model by accounting for stretching, bending, and twisting kinematics of the fibers through the computations of the first-order and second-order gradient of deformation. Emphasis is placed on deriving the Euler equation and boundary conditions of bending moment within the framework of the variational principle and configuring composite surfaces using differential geometry. Significant attention has been given to illustrating the concurrent three-dimensional deformation of fiber composite, meshwork deformation, and fiber kinematics. The simulation results reveal that for a square fiber composite subjected to the out-of-plane bending moment, the maximum in-plane deformation of matrix material occurs along the diagonal direction of the domain while the center of the domain experiences weak in-plane deformation. Notably, the matrix material performs isotropic/anisotropic properties depending on the domain size/shape. In addition, the simulated unit fiber deformations reasonably validate the overall deformation of the network, underscoring that the deformations of the embedded fiber units govern the overall mechanical performance of the fiber meshwork. More importantly, the continuum model qualitatively provides reasonable predictions on the damage patterns of construction materials by demonstrating the kinematics of matrix material and meshwork deformation.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Babaeidarabad
,
S.
,
De Caso
,
F.
, and
Nanni
,
A.
,
2014
, “
Out-of-Plane Behavior of Urm Walls Strengthened With Fabric-Reinforced Cementitious Matrix Composite
,”
J. Compos. Constr.
,
18
(
4
), p.
04013057
.
2.
Bailly
,
L.
,
Toungara
,
M.
,
Orgéas
,
L.
,
Bertrand
,
E.
,
Deplano
,
V.
, and
Geindreau
,
C.
,
2014
, “
In-Plane Mechanics of Soft Architectured Fiber-Reinforced Silicone Rubber Membranes
,”
J. Mech. Behav. Biomed. Mater.
,
40
, pp.
339
353
.
3.
Maurer
,
M. M.
,
Röhrnbauer
,
B.
,
Feola
,
A.
,
Deprest
,
J.
, and
Mazza
,
E.
,
2015
, “
Prosthetic Meshes for Repair of Hernia and Pelvic Organ Prolapse: Comparison of Biomechanical Properties
,”
Materials
,
8
(
5
), pp.
2794
2808
.
4.
Gupta
,
A.
,
Meena
,
G. K.
, and
Singhal
,
V.
,
2023
, “
Strengthening of Autoclaved Aerated Concrete (AAC) Masonry Wallettes With Fabric Reinforced Cementitious Matrix for In-Plane Shear and Out-of-Plane Loads
,”
Structures
,
Vol. 51
,
Elsevier
, pp.
1869
1880
.
5.
Shao
,
H.
,
Li
,
J.
,
Chen
,
N.
,
Shao
,
G.
,
Jiang
,
J.
, and
Yang
,
Y.
,
2018
, “
Experimental Study on Bi-Axial Mechanical Properties of Warp-Knitted Meshes With and Without Initial Notches
,”
Materials
,
11
(
10
), p.
1999
.
6.
Leong
,
K. H.
,
Ramakrishna
,
S.
,
Huang
,
Z. M.
, and
Bibo
,
G. A.
,
2000
, “
The Potential of Knitting for Engineering Composites-A Review
,”
Compos. Part A: Appl. Sci. Manuf.
,
31
(
3
), pp.
197
220
.
7.
Wu
,
X.
, and
Wisnom
,
M. R.
,
2023
, “
Compressive Failure Strain of Unidirectional Carbon Fibre Composites From Bending Tests
,”
Compos. Struct.
,
304
, p.
116467
.
8.
Dou
,
H.
,
Ye
,
W.
,
Zhang
,
D.
,
Wu
,
C.
,
Huang
,
K.
,
Sun
,
T.
, and
Cheng
,
Y.
,
2023
, “
Three-Point Bending Properties of 3D-Printed Continuous Carbon Fiber Reinforced Heterogeneous Composites Based on Fiber Content Gradients
,”
Adv. Eng. Mater.
,
25
(
1
), p.
2200829
.
9.
Meskhi
,
B.
,
Beskopylny
,
A. N.
,
Stel’makh
,
S. A.
,
Shcherban’
,
E. M.
,
Mailyan
,
L. R.
,
Beskopylny
,
N.
, and
Dotsenko
,
N.
,
2022
, “
Theoretical and Experimental Substantiation of the Efficiency of Combined-Reinforced Glass Fiber Polymer Composite Concrete Elements in Bending
,”
Polymers
,
14
(
12
), p.
2324
.
10.
Yu
,
W.
,
Zhang
,
W.
,
Zhi
,
B.
,
Yao
,
W.
, and
Fujii
,
T.
,
2022
, “
Effect of Bamboo Fiber Aspect Ratio on the Bending Properties of Bamboo Fiber/Polypropylene Composite
,”
Ferroelectrics
,
595
(
1
), pp.
17
26
.
11.
Ehrenbring
,
H. Z.
,
Pacheco
,
F.
,
Christ
,
R.
, and
Tutikian
,
B. F.
,
2022
, “
Bending Behavior of Engineered Cementitious Composites (ECC) With Different Recycled and Virgin Polymer Fibers
,”
Constr. Build. Mater.
,
346
, p.
128355
.
12.
Castillo-Lara
,
J. F.
,
Flores-Johnson
,
E. A.
,
Valadez-Gonzalez
,
A.
,
Herrera-Franco
,
P. J.
,
Carrillo
,
J. G.
,
Gonzalez-Chi
,
P. I.
,
Agaliotis
,
E.
, and
Li
,
Q. M.
,
2021
, “
Mechanical Behaviour of Composite Sandwich Panels With Foamed Concrete Core Reinforced With Natural Fibre in Four-Point Bending
,”
Thin-Walled Struct.
,
169
, p.
108457
.
13.
Alshahrani
,
H.
, and
Ahmed
,
A.
,
2022
, “
Study on Flexural Behavior of Glass Fiber Reinforced Plastic Sandwich Composites Using Liquid Thermoplastic Resin
,”
Polymers
,
14
(
19
), p.
4045
.
14.
Pei
,
X. L. S.
,
Fan
,
K.
,
Geng
,
H.
, and
Li
,
F.
,
2020
, “
Bending Performance of Steel Fiber Reinforced Concrete Beams Based on Composite-recycled Aggregate and Matched With 500 MPa Rebars
,”
Materials
,
13
(
4
), p.
930
.
15.
Cui
,
Z.
,
Huang
,
X.
,
Jia
,
M.
,
Panahi-Sarmad
,
M.
,
Hossen
,
M. D. I.
,
Dong
,
K.
, and
Xiao
,
X.
,
2023
, “
3D Printing of Continuous Fiber Reinforced Cellular Structural Composites for the Study of Bending Performance
,”
J. Reinf. Plast. Compos.
,
42
(
13–14
), pp.
673
684
.
16.
Maung
,
P. T.
,
Prusty
,
B. G.
,
Donough
,
M. J.
,
Oromiehie
,
E.
,
Phillips
,
A. W.
, and
St John
,
N. A.
,
2023
, “
Automated Manufacture of Optimised Shape-Adaptive Compsite Hydrofoils With Curvilinear Fibre Paths for Improved Bend-Twist Performance
,”
Mar. Struct.
,
87
, p.
103327
.
17.
Li
,
L.
,
Guan
,
J.
,
Xie
,
Y.
, and
Cao
,
M.
,
2022
, “
Characterization of Bending Performance of Reinforced Cementitious Composites Beams With Hybrid Fibers After Exposure to High Temperatures
,”
Struct. Concr.
,
23
(
1
), pp.
395
411
.
18.
Noshiravani
,
T.
, and
Brühwiler
,
E.
,
2013
, “
Experimental Investigation on Reinforced Ultra-High-Performance Fiber-Reinforced Concrete Composite Beams Subjected to Combined Bending and Shear
,”
ACI Struct. J.
,
110
(
ARTICLE
), pp.
251
261
.
19.
Yu
,
Y.
,
Hou
,
W.-B.
,
Hu
,
P.
,
Yang
,
H.
, and
Jia
,
X.
,
2021
, “
Failure Analysis and Bending Performance of Carbon Fiber Composite Sandwich Structures With Corrugated Cores
,”
J. Sandw. Struct. Mater.
,
23
(
5
), pp.
1427
1452
.
20.
Zhang
,
J.
, and
Li
,
V. C.
,
2002
, “
Monotonic and Fatigue Performance in Bending of Fiber-Reinforced Engineered Cementitious Composite in Overlay System
,”
Cem. Concr. Res.
,
32
(
3
), pp.
415
423
.
21.
Yu
,
H.
,
Zhao
,
H.
, and
Shi
,
F.
,
2019
, “
Bending Performance and Reinforcement of Rocker Panel Components With Unidirectional Carbon Fiber Composite
,”
Materials
,
12
(
19
), p.
3164
.
22.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
23.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast. Phys. Sci. Solids
,
61
, pp.
1
48
.
24.
Fung
,
Y. C.
,
1984
, “
Structure and Stress-Strain Relationship of Soft Tissues
,”
Amer. Zool.
,
24
(
1
), pp.
13
22
.
25.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol. Heart Circ. Physiol.
,
237
(
5
), pp.
H620
H631
.
26.
Mulhern
,
J. F.
,
Rogers
,
T. G.
, and
Spencer
,
A.
,
1969
, “
A Continuum Theory of a Plastic-Elastic Fibre-Reinforced Material
,”
Int. J. Eng. Sci.
,
7
(
2
), pp.
129
152
.
27.
Steigmann
,
D. J.
,
2012
, “
Theory of Elastic Solids Reinforced With Fibers Resistant to Extension, Flexure and Twist
,”
Int. J. Non-Linear Mech.
,
47
(
7
), pp.
734
742
.
28.
Steigmann
,
D. J.
, and
Dell’Isola
,
F.
,
2015
, “
Mechanical Response of Fabric Sheets to Three-Dimensional Bending, Twisting, and Stretching
,”
Acta. Mech. Sin.
,
31
, pp.
373
382
.
29.
Rahman
,
M. H.
,
Yang
,
S.
, and
Kim
,
C. I.
,
2023
, “
A Third Gradient-Based Continuum Model for the Mechanics of Continua Reinforced With Extensible Bidirectional Fibers Resistant to Flexure
,”
Contin. Mech. Thermodyn.
,
35
(
2
), pp.
563
593
.
30.
Zhalmuratova
,
D.
,
La
,
T.-G.
,
Yu
,
K. T.-T.
,
Szojka
,
A. R. A.
,
Andrews
,
S. H. J.
,
Adesida
,
A. B.
,
Kim
,
C.-I.
,
Nobes
,
D. S.
,
Freed
,
D. H.
, and
Chung
,
H.-J.
,
2019
, “
Mimicking “J-Shaped” and Anisotropic Stress–Strain Behavior of Human and Porcine Aorta by Fabric-Reinforced Elastomer Composites
,”
ACS Appl. Mater. Interfaces
,
11
(
36
), pp.
33323
33335
.
31.
Kim
,
C. I. L.
, and
Zeidi
,
M.
,
2018
, “
Gradient Elasticity Theory for Fiber Composites With Fibers Resistant to Extension and Flexure
,”
Int. J. Eng. Sci.
,
131
, pp.
80
99
.
32.
Kim
,
C. I.
, and
Islam
,
S.
,
2020
, “
Mechanics of Third-Gradient Continua Reinforced With Fibers Resistant to Flexure in Finite Plane Elastostatics
,”
Contin. Mech. Thermodyn.
,
32
(
6
), pp.
1595
1617
.
33.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
34.
Islam
,
S.
,
Bolouri
,
S. E. S.
, and
Kim
,
C.-I.
,
2021
, “
Mechanics of Hyperelastic Composites Reinforced With Nonlinear Elastic Fibrous Materials in Finite Plane Elastostatics
,”
Int. J. Eng. Sci.
,
165
, p.
103491
.
35.
Bolouri
,
S. E. S.
, and
Kim
,
C.-I.
,
2021
, “
A Model for the Second Strain Gradient Continua Reinforced With Extensible Fibers in Plane Elastostatics
,”
Contin. Mech. Thermodyn.
,
33
(
5
), pp.
2141
2165
.
36.
Islam
,
S.
,
Zhalmuratova
,
D.
,
Chung
,
H.-J.
, and
Kim
,
C. I.
,
2020
, “
A Model for Hyperelastic Materials Reinforced With Fibers Resistance to Extension and Flexure
,”
Int. J. Solids. Struct.
,
193
, pp.
418
433
.
37.
Kim
,
C. I.
,
2019
, “
Strain-Gradient Elasticity Theory for the Mechanics of Fiber Composites Subjected to Finite Plane Deformations: Comprehensive Analysis
,”
Multiscale Sci. Eng.
,
1
(
2
), pp.
150
160
.
38.
Giorgio
,
I.
,
Grygoruk
,
R.
,
Dell’Isola
,
F.
, and
Steigmann
,
D. J.
,
2015
, “
Pattern Formation in the Three-Dimensional Deformations of Fibered Sheets
,”
Mech. Res. Commun.
,
69
, pp.
164
171
.
39.
Giorgio
,
I.
,
Corte
,
A. D.
,
dell’Isola
,
F.
, and
Steigmann
,
D. J.
,
2016
, “
Buckling Modes in Pantographic Lattices
,”
C. R. - Mec.
,
344
, pp.
487
501
.
40.
Steigmann
,
D. J.
,
2018
, “
Continuum Theory for Elastic Sheets Formed by Inextensible Crossed Elasticae
,”
Int. J. Non-Linear Mech.
,
106
, pp.
324
329
.
41.
Giorgio
,
I.
,
dell’Isola
,
F.
, and
Steigmann
,
D. J.
,
2019
, “
Edge Effects in Hypar Nets
,”
C. R. - Mec.
,
347
, pp.
114
123
.
42.
Spencer
,
A. J. M.
, and
Soldatos
,
K. P.
,
2007
, “
Finite Deformations of Fibre-Reinforced Elastic Solids With Fibre Bending Stiffness
,”
Int. J. Non-Linear Mech.
,
42
(
2
), pp.
355
368
.
43.
Steigmann
,
D. J.
, and
dell’Isola
,
F.
,
2015
, “
Mechanical Response of Fabric Sheets to Three-Dimensional Bending, Twisting, and Stretching
,”
Acta Mech. Sinica/Lixue Xuebao
,
31
, pp.
373
382
.
44.
Kim
,
C. I.
,
2018
, “
Superposed Incremental Deformations of an Elastic Solid Reinforced With Fibers Resistant to Extension and Flexure
,”
Adv. Mater. Sci. Eng.
,
2018
, pp.
1
11
.
45.
Kim
,
C. I.
,
2019
, “
Strain-Gradient Elasticity Theory for the Mechanics of Fiber Composites Subjected to Finite Plane Deformations: Comprehensive Analysis
,”
Multiscale Sci. Eng.
,
1
(
2
), pp.
150
160
.
46.
Zeidi
,
M.
, and
Kim
,
C. I.
,
2018
, “
Finite Plane Deformations of Elastic Solids Reinforced With Fibers Resistant to Flexure: Complete Solution
,”
Archive Appl. Mech.
,
88
, pp.
819
835
.
47.
Zeidi
,
M.
, and
Kim
,
C. I. L.
,
2019
, “
Mechanics of Fiber Composites With Fibers Resistant to Extension and Flexure
,”
Math. Mech. Solids
,
24
(
1
), pp.
3
17
.
48.
Zeidi
,
M.
, and
Kim
,
C. I. L.
,
2018
, “
Mechanics of an Elastic Solid Reinforced With Bidirectional Fiber in Finite Plane Elastostatics: Complete Analysis
,”
Contin. Mech. Thermodyn.
,
30
(
3
), pp.
573
592
.
49.
Rivlin
,
R. S.
,
1995
, “
Constitutive Equation for a Fiber-Reinforced Lamina
,” IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics,
D. F.
Parker
, and
A. H.
England
, eds.,
Springer Netherlands
,
Dordrecht, The Netherlands
, pp.
379
384
.
50.
(Anthony James Merrill) Spencer
,
A. J. M.
,
1972
, Deformations of Fibre-Reinforced Materials. Oxford Science Research Papers. Clarendon Press.
51.
Spencer
,
A. J. M.
, and
Soldatos
,
K. P.
,
2007
, “
Finite Deformations of Fibre-Reinforced Elastic Solids With Fibre Bending Stiffness
,”
Int. J. Non-Linear Mech.
,
42
(
2
), pp.
355
368
.
52.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2006
,
Mechanics of Biological Tissue
,
Springer
,
Dordrecht
.
53.
Steigmann
,
D. J.
,
2017
,
Finite Elasticity Theory
,
Oxford University Press
,
Oxford, UK
.
54.
Ogden
,
R.
,
1984
, “
Non-Linear Elastic Deformations
,”
Eng. Anal.
,
1
(
2
), p. 119.
55.
Steigmann
,
D. J.
,
2018
, “
Equilibrium of Elastic Lattice Shells
,”
J. Eng. Math.
,
109
, pp.
47
61
.
56.
Toupin
,
R. A.
,
1964
, “
Theories of Elasticity With Couple-Stress
,”
Arch. Ration. Mech. Anal.
,
17
(
2
), pp.
85
112
.
57.
Koiter
,
W. T.
,
1964
, “
Couple Stresses in the Theory of Elasticity, I and II
,”
P. K. Ned. Akad. Wetenschappen Ser. B
,
67
, p.
0964
.
58.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
415
448
.
59.
Germain
,
P.
,
1973
, “
The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure
,”
SIAM J. Appl. Math.
,
25
, pp.
556
575
.
60.
Steigmann
,
D. J.
,
2018
,
Mechanics and Physics of Lipid Bilayers
,
Springer
,
Dordrecht
,
Vol. 577
.
61.
Steigmannn
,
D. J.
,
2013
, “
A Model for Lipid Membranes With Tilt and Distension Based on Three-Dimensional Liquid Crystal Theory
,”
Int. J. Non-Linear Mech.
,
56
, pp.
61
70
.v
62.
Logg
,
A.
, and
Wells
,
G. N.
,
2010
, “
Dolfin: Automated Finite Element Computing
,”
ACM Trans. Math. Softw.
,
37
(
2
), pp.
1
28
.
63.
Logg
,
A.
,
Wells
,
G. N.
, and
Hake
,
J.
,
2012
,
DOLFIN: A C++/Python Finite Element Library
,
Springer
,
Dordrecht
, Vol. 84.
64.
Hahm
,
S.-W.
, and
Khang
,
D.-Y.
,
2010
, “
Crystallization and Microstructure-Dependent Elastic Moduli of Ferroelectric P (VDF–TRFE) Thin Films
,”
Soft Matter
,
6
(
22
), pp.
5802
5806
.
65.
Monecke
,
J.
,
1989
, “
Microstructure Dependence of Material Properties of Composites
,”
Phys. Status Solidi. (b)
,
154
(
2
), pp.
805
813
.
66.
Moravec
,
F.
, and
Holeček
,
M.
,
2010
, “
Microstructure-Dependent Nonlinear Viscoelasticity Due to Extracellular Flow Within Cellular Structures
,”
Int. J. Solids Struct.
,
47
(
14–15
), pp.
1876
1887
.
67.
Voigt
,
W.
,
1887
, “Theoretische studien über die elastizitätsverhältnisse der kristalle abhandlungen der gesellschaft der wissenschaften zu göttingen 34”.
68.
Lalit Sagar
,
S.
,
Singhal
,
V.
, and
Rai
,
D. C.
,
2019
, “
In-Plane and Out-of-Plane Behavior of Masonry-Infilled RC Frames Strengthened With Fabric-Reinforced Cementitious Matrix
,”
J. Compos. Constr.
,
23
(
1
), p.
04018073
.
69.
Magenes
,
G.
, and
Calvi
,
G. M.
,
1997
, “
In-Plane Seismic Response of Brick Masonry Walls
,”
Earthq. Eng. Struct. Dyn.
,
26
(
11
), pp.
1091
1112
.
70.
Ismail
,
N.
, and
Ingham
,
J. M.
,
2016
, “
In-Plane and Out-of-Plane Testing of Unreinforced Masonry Walls Strengthened Using Polymer Textile Reinforced Mortar
,”
Eng. Struct.
,
118
, pp.
167
177
.
You do not currently have access to this content.