Abstract

Compared to traditional robotic systems, small-scale robots, ranging from several millimeters to micrometres in size, are capable of reaching narrower and vulnerable regions with minimal damage. However, conventional small-scale robots’ limited maneuverability and controlability hinder their ability to effectively navigate in the intricate environments, such as the gastrointestinal tract. Self-propelled capsule robots driven by vibrations and impacts emerge as a promising solution, holding the potentials to enhance diagnostic accuracy, enable targeted drug delivery, and alleviate patient discomfort during gastrointestinal endoscopic procedures. This paper builds upon our previous work on self-propelled capsule robots, exploring the potential of nonlinear connecting springs to enhance its propulsion capabilities. Leveraging a mathematical model for self-propelling robots with a von Mises truss spring, which is verified using a finite element model, we investigate the effects of negative stiffness and snap-back within the nonlinear structural spring on the robots’ propelling speed. Our analysis reveals that the negative stiffness of the von Mises truss can significantly reduce the sensitivity of the propelling speed to excitation frequency. As a result, the capsule robot exhibits a remarkably wider operational band where it maintains a high average propelling speed, surpassing its linear counterpart. This work sheds light on the potential for developing customized nonlinear structural systems for diverse scenarios in small-scale robot applications, opening up new possibilities for enhanced functionality and maneuverability in various biomedical applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Maibaum
,
A.
,
Bischof
,
A.
,
Hergesell
,
J.
, and
Lipp
,
B.
,
2022
, “
A Critique of Robotics in Health Care
,”
AI Soc.
,
37
(
2
), pp.
467
477
.
2.
Yu
,
L.
,
Yang
,
E.
,
Ren
,
P.
,
Luo
,
C.
,
Dobie
,
G.
,
Gu
,
D.
, and
Yan
,
X.
,
2019
, “
Inspection Robots in Oil and Gas Industry: A Review of Current Solutions and Future Trends
,”
25th International Conference on Automation and Computing (ICAC)
,
Lancaster, UK
,
Sept. 5–7
, pp.
1
6
.
3.
Aitken
,
J.
,
Evans
,
M.
,
Worley
,
R.
,
Edwards
,
S.
,
Zhang
,
R.
,
Dodd
,
T.
,
Mihaylova
,
L.
, and
Anderson
,
S.
,
2021
, “
Simultaneous Localization and Mapping for Inspection Robots in Water and Sewer Pipe Networks: A Review
,”
IEEE Access
,
9
, p.
140173
.
4.
Duong
,
L.
,
Al-Fadhli
,
M.
,
Jagtap
,
S.
,
Bader
,
F.
,
Martindale
,
W.
,
Swainson
,
M.
, and
Paoli
,
A.
,
2020
, “
A Review of Robotics and Autonomous Systems in the Food Industry: From the Supply Chains Perspective
,”
Trends Food Sci. Technol.
,
106
(
12
), pp.
355
364
.
5.
Liu
,
Y.
,
Chernousko
,
F.
,
Terry
,
B.
, and
Páez Chávez
,
J.
,
2022
, “
Special Issue on Self-propelled Robots: From Theory to Applications
,”
Meccanica
,
58
(
2–3
), pp.
317
319
.
6.
Hu
,
W.
,
Lum
,
G.
,
Mastrangeli
,
M.
, and
Sitti
,
M.
,
2018
, “
Small-Scale Soft-Bodied Robot With Multimodal Locomotion
,”
Nature
,
554
(
7690
), pp.
81
85
.
7.
Jeon
,
S.
,
Hoshiar
,
A.
,
Kim
,
K.
,
Lee
,
S.
,
Kim
,
E.
,
Lee
,
S.
,
Kim
,
J.
,
Nelson
,
B.
,
Cha
,
H.
,
Yi
,
B.
, and
Choi
,
H.
,
2019
, “
A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network
,”
Soft Rob.
,
6
(
1
), pp.
54
68
.
8.
Chen
,
Y.
,
Zhao
,
H.
,
Mao
,
J.
,
Chirarattananon
,
P.
,
Helbling
,
E.
,
Hyun
,
N.
,
Clarke
,
D.
, and
Wood
,
R.
,
2019
, “
Controlled Flight of a Microrobot Powered by Soft Artificial Muscles
,”
Nature
,
575
(
7783
), pp.
324
329
.
9.
Jiang
,
J.
,
Yang
,
Z.
,
Ferreira
,
A.
, and
Zhang
,
L.
,
2022
, “
Control and Autonomy of Microrobots: Recent Progress and Perspective
,”
Adv. Intell. Syst.
,
4
, p.
2100279
.
10.
Liu
,
Y.
,
Páez Chávez
,
J.
,
Zhang
,
J.
,
Tian
,
J.
,
Guo
,
B.
, and
Prasad
,
S.
,
2020
, “
The Vibro-impact Capsule System in Millimetre Scale: Numerical Optimisation and Experimental Verification
,”
Meccanica
,
55
(
10
), pp.
1885
1902
.
11.
Zhang
,
J.
,
Liu
,
Y.
,
Tian
,
J.
,
Zhu
,
D.
, and
Prasad
,
S.
,
2023
, “
Design and Experimental Investigation of a Vibro-impact Capsule Robot for Colonoscopy
,”
IEEE Rob. Autom. Lett.
,
8
(
3
), pp.
1842
1849
.
12.
Shan
,
Y.
,
Yan
,
Y.
,
Páez Chávez
,
J.
, and
Liu
,
Y.
,
2023
, “
Dynamics of a Self-propelled Capsule Robot in Contact With Different Folds in the Small Intestine
,”
Commun. Nonlinear Sci. Numer. Simul.
,
126
, p.
107445
.
13.
Bažant
,
Z. P.
,
2000
, “
Structural Stability
,”
Int. J. Solids Struct.
,
37
(
1–2
), pp.
55
67
.
14.
Shen
,
J.
, and
Wadee
,
M. A.
,
2018
, “
Length Effects on Interactive Buckling in Thin-Walled Rectangular Hollow Section Struts
,”
Thin-Walled Struct.
,
128
, pp.
152
170
.
(Special Issue on the 7th International Conference on Coupled Instabilities in Metal Structures)
.
15.
Arena
,
G.
,
Groh
,
R. M. J.
,
Brinkmeyer
,
A.
,
Theunissen
,
R.
,
Weaver
,
P. M.
, and
Pirrera
,
A.
,
2017
, “
Adaptive Compliant Structures for Flow Regulation
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2204
), p.
20170334
.
16.
Wheatcroft
,
E.
,
Shen
,
J.
,
Groh
,
R. M. J.
,
Pirrera
,
A.
, and
Schenk
,
M.
,
2023
, “
Structural Function From Sequential, Interacting Elastic Instabilities
,”
Proc. R. Soc. A
,
479
(
2272
), p.
20220861
.
17.
An
,
N.
,
Domel
,
A. G.
,
Zhou
,
J.
,
Rafsanjani
,
A.
, and
Bertoldi
,
K.
,
2020
, “
Programmable Hierarchical Kirigami
,”
Adv. Funct. Mater.
,
30
(
6
), p.
1906711
.
18.
Shen
,
J.
,
Pirrera
,
A.
, and
Groh
,
R. M. J.
,
2022
, “
Building Blocks That Govern Spontaneous and Programmed Pattern Formation in Pre-compressed Bilayers
,”
Proc. R. Soc. A
,
478
(
2265
), p.
20220173
.
19.
Li
,
B.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft Matter
,
8
(
21
), pp.
5728
5745
.
20.
Chen
,
C.-M.
, and
Yang
,
S.
,
2012
, “
Wrinkling Instabilities in Polymer Films and Their Applications
,”
Polym. Int.
,
61
(
7
), pp.
1041
1047
.
21.
Jin
,
T.
,
Cheng
,
X.
,
Xu
,
S.
,
Lai
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Deep Learning Aided Inverse Design of the Buckling-Guided Assembly for 3d Frame Structures
,”
J. Mech. Phys. Solids
,
179
, p.
105398
.
22.
Tang
,
Y.
,
Chi
,
Y.
,
Sun
,
J.
,
Huang
,
T.-H.
,
Maghsoudi
,
O. H.
,
Spence
,
A.
,
Zhao
,
J.
,
Su
,
H.
, and
Yin
,
J.
,
2020
, “
Leveraging Elastic Instabilities for Amplified Performance: Spine-Inspired High-Speed and High-Force Soft Robots
,”
Sci. Adv.
,
6
(
19
), p.
eaaz6912
.
23.
Pal
,
A.
,
Restrepo
,
V.
,
Goswami
,
D.
, and
Martinez
,
R. V.
,
2021
, “
Exploiting Mechanical Instabilities in Soft Robotics: Control, Sensing, and Actuation
,”
Adv. Mater.
,
33
(
19
), p.
2006939
.
24.
Chi
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Hong
,
Y.
,
Tang
,
Y.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv. Mater.
,
34
(
19
), p.
2110384
.
25.
Shen
,
J.
,
Garrad
,
M.
,
Zhang
,
Q.
,
Wong
,
V.
,
Pirrera
,
A.
, and
Groh
,
R. M. J.
, “
A Rapid-Response Soft End Effector Inspired by the Hummingbird Beak
,”
J. R. Soc. Interface
(Under review).
26.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
Van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), pp.
1
11
.
27.
Bunyan
,
J.
, and
Tawfick
,
S.
,
2019
, “
Exploiting Structural Instability to Design Architected Materials Having Essentially Nonlinear Stiffness
,”
Adv. Eng. Mater.
,
21
(
2
), p.
1800791
.
28.
Deng
,
B.
,
Zareei
,
A.
,
Ding
,
X.
,
Weaver
,
J. C.
,
Rycroft
,
C. H.
, and
Bertoldi
,
K.
,
2022
, “
Inverse Design of Mechanical Metamaterials With Target Nonlinear Response Via a Neural Accelerated Evolution Strategy
,”
Adv. Mater.
,
34
(
41
), p.
2206238
.
29.
Shen
,
J.
,
Garrad
,
M.
,
Zhang
,
Q.
,
Leao
,
O.
,
Pirrera
,
A.
, and
Groh
,
R. M. J.
,
2023
, “
Active Reconfiguration of Multistable Metamaterials for Linear Locomotion
,”
Phys. Rev. B
,
107
(
21
), p.
214103
.
30.
Thompson
,
J. M. T.
,
Hutchinson
,
J. W.
, and
Sieber
,
J.
,
2017
, “
Probing Shells Against Buckling: A Nondestructive Technique for Laboratory Testing
,”
Int. J. Bifurcat. Chaos
,
27
(
14
), p.
1730048
.
31.
Neville
,
R. M.
,
Groh
,
R. M.
,
Pirrera
,
A.
, and
Schenk
,
M.
,
2020
, “
Beyond the Fold: Experimentally Traversing Limit Points in Nonlinear Structures
,”
Proc. R. Soc. A
,
476
(
2233
), p.
20190576
.
32.
Shen
,
J.
,
Groh
,
R. M. J.
,
Schenk
,
M.
, and
Pirrera
,
A.
,
2021
, “
Experimental Path-Following of Equilibria Using Newton’s Method. Part I: Theory, Modelling, Experiments
,”
Int. J. Solids Struct.
,
210–211
(
6
), pp.
203
223
.
33.
Shen
,
J.
,
Groh
,
R. M. J.
,
Schenk
,
M.
, and
Pirrera
,
A.
,
2021
, “
Experimental Path-Following of Equilibria Using Newton’s Method. Part II: Applications and Outlook
,”
Int. J. Solids Struct.
,
213
(
1
), pp.
25
40
.
34.
Shen
,
J.
,
Groh
,
R. M.
,
Wadee
,
M. A.
,
Schenk
,
M.
, and
Pirrera
,
A.
,
2022
, “
Probing the Stability Landscape of Prestressed Stayed Columns Susceptible to Mode Interaction
,”
Eng. Struct.
,
251
, p.
113465
.
35.
Shen
,
J.
,
Lapira
,
L.
,
Wadee
,
M. A.
,
Gardner
,
L.
,
Pirrera
,
A.
, and
Groh
,
R. M.
,
2023
, “
Probing In Situ Capacities of Prestressed Stayed Columns: Towards a Novel Structural Health Monitoring Technique
,”
Philos. Trans. R. Soc. A
,
381
(
2244
), p.
20220033
.
36.
Groh
,
R. M. J.
,
Avitabile
,
D.
, and
Pirrera
,
A.
,
2018
, “
Generalised Path-Following for Well-Behaved Nonlinear Structures
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
394
426
.
37.
Reis
,
P. M.
,
2015
, “
A Perspective on the Revival of Structural (in) Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia
,”
J. Appl. Mech.
,
82
(
11
), p.
111001
.
38.
Wan
,
G.
,
Avis
,
S. J.
,
Wang
,
Z.
,
Wang
,
X.
,
Kusumaatmaja
,
H.
, and
Zhang
,
T.
,
2024
, “
Finding Transition State and Minimum Energy Path of Bistable Elastic Continua Through Energy Landscape Explorations
,”
J. Mech. Phys. Solids
,
183
, p.
105503
.
39.
Eriksson
,
A.
,
1998
, “
Structural Instability Analyses Based on Generalised Path-Following
,”
Comput. Methods Appl. Mech. Eng.
,
156
(
1–4
), pp.
45
74
.
40.
Páez Chávez
,
J.
,
Liu
,
Y.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2016
, “
Path-Following Analysis of the Dynamical Response of a Piecewise-Linear Capsule System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
37
, pp.
102
114
.
41.
Groh
,
R. M. J.
, and
Pirrera
,
A.
,
2019
, “
On the Role of Localizations in Buckling of Axially Compressed Cylinders
,”
Proc. R. Soc. A
,
475
(
2224
), p.
20190006
.
42.
Liu
,
F.
,
Jiang
,
X.
,
Wang
,
X.
, and
Wang
,
L.
,
2020
, “
Machine Learning-Based Design and Optimization of Curved Beams for Multistable Structures and Metamaterials
,”
Extreme Mech. Lett.
,
41
, p.
101002
.
43.
Oliveri
,
G.
, and
Overvelde
,
J. T.
,
2020
, “
Inverse Design of Mechanical Metamaterials That Undergo Buckling
,”
Adv. Funct. Mater.
,
30
(
12
), p.
1909033
.
44.
Li
,
W.
,
Wang
,
F.
,
Sigmund
,
O.
, and
Zhang
,
X. S.
,
2022
, “
Digital Synthesis of Free-Form Multimaterial Structures for Realization of Arbitrary Programmed Mechanical Responses
,”
Proc. Natl. Acad. Sci. U S A
,
119
(
10
), p.
e2120563119
.
45.
Sun
,
X.
,
Zhou
,
K.
,
Demoly
,
F.
,
Zhao
,
R. R.
, and
Qi
,
H. J.
,
2023
, “
Perspective: Machine Learning in Design for 3D/4D Printing
,”
J. Appl. Mech.
,
91
(
3
), pp.
1
30
.
46.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.
47.
Findeisen
,
C.
,
Hohe
,
J.
,
Kadic
,
M.
, and
Gumbsch
,
P.
,
2017
, “
Characteristics of Mechanical Metamaterials Based on Buckling Elements
,”
J. Mech. Phys. Solids
,
102
, pp.
151
164
.
48.
Yang
,
H.
,
D’Ambrosio
,
N.
,
Liu
,
P.
,
Pasini
,
D.
, and
Ma
,
L.
,
2023
, “
Shape Memory Mechanical Metamaterials
,”
Mater. Today
,
66
, pp.
36
49
.
49.
Sun
,
S.
,
An
,
N.
,
Wang
,
G.
,
Li
,
M.
, and
Zhou
,
J.
,
2021
, “
Achieving Selective Snapping-Back and Enhanced Hysteresis in Soft Mechanical Metamaterials Via Fiber Reinforcement
,”
J. Appl. Phys.
,
129
(
4
), p.
044903
.
50.
Yan
,
Y.
,
Páez Chávez
,
J.
,
Shen
,
J.
, and
Liu
,
Y.
, “
Dynamics of the Vibro-impact Capsule System With a Von Mises Spring
,”
Nonlinear Dyn.
(under review).
51.
Zhang
,
J.
,
Liu
,
Y.
,
Zhu
,
D.
,
Prasad
,
S.
, and
Liu
,
C.
,
2022
, “
Simulation and Experimental Studies of a Vibro-impact Capsule System Driven by an External Magnetic Field
,”
Nonlinear Dyn.
,
109
(
3
), pp.
1501
1516
.
52.
Zhang
,
J.
,
Tian
,
J.
,
Zhu
,
D.
,
Liu
,
Y.
, and
Prasad
,
S.
,
2022
, “
Design and Experimental Investigation of a Vibro-impact Self-propelled Capsule Robot With Orientation Control
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, pp.
11381
11387
.
53.
Chi
,
Y.
,
Hong
,
Y.
,
Zhao
,
Y.
,
Li
,
Y.
, and
Yin
,
J.
,
2022
, “
Snapping for High-Speed and High-Efficient Butterfly Stroke-Like Soft Swimmer
,”
Sci. Adv.
,
8
(
46
), p.
eadd3788
.
54.
Falope
,
F. O.
,
Pelliciari
,
M.
,
Lanzoni
,
L.
, and
Tarantino
,
A. M.
,
2021
, “
Snap-Through and Eulerian Buckling of the Bi-stable Von Mises Truss in Nonlinear Elasticity: A Theoretical, Numerical and Experimental Investigation
,”
Int. J. Non-Linear Mech.
,
134
, p.
103739
.
55.
Masana
,
R.
,
Dalaq
,
A. S.
,
Khazaaleh
,
S.
, and
Daqaq
,
M.
,
2024
, “
The Kresling Origami Spring: A Review and Assessment
,”
Smart Mater. Struct.
,
33
(
4
), pp.
36
49
.
56.
Tian
,
J.
,
Afebu
,
K. O.
,
Wang
,
Z.
,
Liu
,
Y.
, and
Prasad
,
S.
,
2023
, “
Dynamic Analysis of a Soft Capsule Robot Self-propelling in the Small Intestine Via Finite Element Method
,”
Nonlinear Dyn.
,
111
(
11
), pp.
9777
9798
.
57.
Qi
,
J.
,
Chen
,
Z.
,
Jiang
,
P.
,
Hu
,
W.
,
Wang
,
Y.
,
Zhao
,
Z.
,
Cao
,
X.
,
Zhang
,
S.
,
Tao
,
R.
,
Li
,
Y.
, and
Fang
,
D.
,
2022
, “
Recent Progress in Active Mechanical Metamaterials and Construction Principles
,”
Adv. Sci.
,
9
(
1
), p.
2102662
.
58.
Sitti
,
M.
,
2021
, “
Physical Intelligence as a New Paradigm
,”
Extreme Mech. Lett.
,
46
, pp.
101340
.
You do not currently have access to this content.