Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This work investigates the effect of material dispersion on the tensile strength of brittle diamond lattice structures. In actual lattice structures fabricated by additive manufacturing, the dispersion of strength comes from microscale defect, geometric deviation, and manufacture-induced anisotropy. The weakening of ultimate failure strength due to material dispersion cannot be predicted by most existing theoretical models, because they assume homogeneous and determinate mechanical properties of the lattice structure. In this paper, we employ a diamond lattice structure made from brittle material as a typical example, and its tensile behavior is numerically investigated by incorporating the Gaussian distribution of strut strength. Inspired by the simulation results, a stochastic theoretical model is developed to predict the deformation and failure of diamond lattice structure with material dispersion. This model captures the fact that weaker struts break first even if the whole structure can still bear the load. With the continuous increase of stress, these broken struts accumulate into continuous cracks, and ultimate failure occurs when the energy release rate of the initiated crack surpasses the fracture toughness of the lattice structure. This research supplements stochastic features into classical theories and improves the understanding of potential strengthening and toughening designs for lattice structures.

References

1.
Zhang
,
J.
,
Lu
,
G.
, and
You
,
Z.
,
2020
, “
Large Deformation and Energy Absorption of Additively Manufactured Auxetic Materials and Structures: A Review
,”
Compos. B: Eng.
,
201
, p.
108340
.
2.
Blakey-Milner
,
B.
,
Gradl
,
P.
,
Snedden
,
G.
,
Brooks
,
M.
,
Pitot
,
J.
,
Lopez
,
E.
,
Leary
,
M.
,
Berto
,
F.
, and
du Plessis
,
A.
,
2021
, “
Metal Additive Manufacturing in Aerospace: A Review
,”
Mater. Des.
,
209
, p.
110008
.
3.
Bo
,
R.
,
Xu
,
S.
,
Yang
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Mechanically-Guided 3D Assembly for Architected Flexible Electronics
,”
Chem. Rev.
,
123
(
18
), pp.
11137
11189
.
4.
Yan
,
Q.
,
Dong
,
H.
,
Su
,
J.
,
Han
,
J.
,
Song
,
B.
,
Wei
,
Q.
, and
Shi
,
Y.
,
2018
, “
A Review of 3D Printing Technology for Medical Applications
,”
Engineering
,
4
(
5
), pp.
729
742
.
5.
Poudel
,
A.
,
Yasin
,
M. S.
,
Ye
,
J.
,
Liu
,
J.
,
Vinel
,
A.
,
Shao
,
S.
, and
Shamsaei
,
N.
,
2022
, “
Feature-Based Volumetric Defect Classification in Metal Additive Manufacturing
,”
Nat. Commun.
,
13
(
1
), p.
6369
.
6.
Wu
,
J.
,
Zhao
,
Z.
,
Hamel
,
C. M.
,
Mu
,
X.
,
Kuang
,
X.
,
Guo
,
Z.
, and
Qi
,
H. J.
,
2018
, “
Evolution of Material Properties During Free Radical Photopolymerization
,”
J. Mech. Phys. Solids
,
112
, pp.
25
49
.
7.
Wang
,
P.
,
Lei
,
H.
,
Zhu
,
X.
,
Chen
,
H.
, and
Fang
,
D.
,
2019
, “
Influence of Manufacturing Geometric Defects on the Mechanical Properties of AlSi10Mg Alloy Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
789
, pp.
852
859
.
8.
Alava
,
M. J.
,
Nukala
,
P. K. V. V.
, and
Zapperi
,
S.
,
2006
, “
Statistical Models of Fracture
,”
Adv. Phys.
,
55
(
3–4
), pp.
349
476
.
9.
Masters
,
I. G.
, and
Evans
,
K. E.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
10.
Ashby
,
M. F.
, and
Medalist
,
R. F. M.
,
1983
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
,
14
(
9
), pp.
1755
1769
.
11.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
12.
Huang
,
J.
, and
Gibson
,
L.
,
1991
, “
Fracture Toughness of Brittle Honeycombs
,”
Acta Metall. Mater.
,
39
(
7
), pp.
1617
1626
.
13.
Chen
,
J. Y.
,
Huang
,
Y.
, and
Ortiz
,
M.
,
1998
, “
Fracture Analysis of Cellular Materials: A Strain Gradient Model
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
789
828
.
14.
Fleck
,
N. A.
, and
Qiu
,
X.
,
2007
, “
The Damage Tolerance of Elastic–Brittle, Two-Dimensional Isotropic Lattices
,”
J. Mech. Phys. Solids
,
55
(
3
), pp.
562
588
.
15.
Lipperman
,
F.
,
Ryvkin
,
M.
, and
Fuchs
,
M. B.
,
2007
, “
Nucleation of Cracks in Two-Dimensional Periodic Cellular Materials
,”
Comput. Mech.
,
39
(
2
), pp.
127
139
.
16.
Quintana Alonso
,
I.
, and
Fleck
,
N. A.
,
2007
, “
Damage Tolerance of an Elastic-Brittle Diamond-Celled Honeycomb
,”
Scr. Mater.
,
56
(
8
), pp.
693
696
.
17.
Tankasala
,
H. C.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2015
, “
2013 Koiter Medal Paper: Crack-Tip Fields and Toughness of Two-Dimensional Elastoplastic Lattices
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091004
.
18.
Romijn
,
N. E. R.
, and
Fleck
,
N. A.
,
2007
, “
The Fracture Toughness of Planar Lattices: Imperfection Sensitivity
,”
J. Mech. Phys. Solids
,
55
(
12
), pp.
2538
2564
.
19.
Mangipudi
,
K. R.
, and
Onck
,
P. R.
,
2011
, “
Multiscale Modelling of Damage and Failure in Two-Dimensional Metallic Foams
,”
J. Mech. Phys. Solids
,
59
(
7
), pp.
1437
1461
.
20.
Driscoll
,
M. M.
,
Chen
,
B. G.
,
Beuman
,
T. H.
,
Ulrich
,
S.
,
Nagel
,
S. R.
, and
Vitelli
,
V.
,
2016
, “
The Role of Rigidity in Controlling Material Failure
,”
Proc. Natl. Acad. Sci. U S A
,
113
(
39
), pp.
10813
10817
.
21.
Ronan
,
W.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2016
, “
The Tensile Ductility of Cellular Solids: The Role of Imperfections
,”
Int. J. Solids Struct.
,
102–103
, pp.
200
213
.
22.
Liu
,
L.
,
Kamm
,
P.
,
García-Moreno
,
F.
,
Banhart
,
J.
, and
Pasini
,
D.
,
2017
, “
Elastic and Failure Response of Imperfect Three-Dimensional Metallic Lattices: The Role of Geometric Defects Induced by Selective Laser Melting
,”
J. Mech. Phys. Solids
,
107
, pp.
160
184
.
23.
Latture
,
R. M.
,
Begley
,
M. R.
, and
Zok
,
F. W.
,
2019
, “
Defect Sensitivity of Truss Strength
,”
J. Mech. Phys. Solids
,
124
, pp.
489
504
.
24.
Jia
,
H.
,
Liu
,
B.
,
Zhao
,
Z.
,
Duan
,
S.
,
Wang
,
P.
, and
Lei
,
H.
,
2022
, “
Experimental Investigation and Numerical Modeling of Laser Powder Bed Fusion Process-Induced Angle-Dependent Defects in Strut-Based Lattice Structure
,”
Mater. Des.
,
224
, p.
111354
.
25.
Seiler
,
P. E.
,
Tankasala
,
H. C.
, and
Fleck
,
N. A.
,
2019
, “
The Role of Defects in Dictating the Strength of Brittle Honeycombs Made by Rapid Prototyping
,”
Acta Mater.
,
171
, pp.
190
200
.
26.
Lavoie
,
S. R.
,
Millereau
,
P.
,
Creton
,
C.
,
Long
,
R.
, and
Tang
,
T.
,
2019
, “
A Continuum Model for Progressive Damage in Tough Multinetwork Elastomers
,”
J. Mech. Phys. Solids
,
125
, pp.
523
549
.
27.
Vernerey
,
F. J.
,
Brighenti
,
R.
,
Long
,
R.
, and
Shen
,
T.
,
2018
, “
Statistical Damage Mechanics of Polymer Networks
,”
Macromolecules
,
51
(
17
), pp.
6609
6622
.
28.
Wang
,
Q.
, and
Gao
,
Z.
,
2016
, “
A Constitutive Model of Nanocomposite Hydrogels With Nanoparticle Crosslinkers
,”
J. Mech. Phys. Solids
,
94
, pp.
127
147
.
29.
Karapiperis
,
K.
, and
Kochmann
,
D. M.
,
2023
, “
Prediction and Control of Fracture Paths in Disordered Architected Materials Using Graph Neural Networks
,”
Commun. Eng.
,
2
(
1
), p.
32
.
30.
Zhao
,
Z.
,
Lei
,
H.
,
Chen
,
H.-S.
,
Zhang
,
Q.
,
Wang
,
P.
, and
Lei
,
M.
,
2021
, “
A Multiscale Tensile Failure Model for Double Network Elastomer Composites
,”
Mech. Mater.
,
163
, p.
104074
.
31.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
32.
Xu
,
M.
,
Zhao
,
Z.
,
Wang
,
P.
,
Duan
,
S.
,
Lei
,
H.
, and
Fang
,
D.
,
2022
, “
Mechanical Performance of Bio-Inspired Hierarchical Honeycomb Metamaterials
,”
Int. J. Solids Struct.
,
254–255
, p.
111866
.
You do not currently have access to this content.