Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Shape-programmable materials have garnered significant attention for their ability to morph into complex three-dimensional (3D) configurations under external stimuli, with critical applications in the fields of biomedical engineering, soft robotics, and sensing technologies. A current challenge lies in determining the geometric parameters of the initial two-dimensional (2D) structure and the intensity of the external stimulus required to achieve a target 3D shape. In this work, we introduce a novel inverse design strategy based on hole-pattern engineering. Utilizing a temperature-sensitive bilayer hydrogel with differing coefficients of thermal expansion in each layer, we achieve controlled bending deformations by varying the porosity distribution in one of the layers. Drawing on the Timoshenko theory on bimetallic beam, we establish a quantitative relationship between the relative density and curvature, allowing for the hole distribution of the initial structure to be tailored to the desired curvature. We demonstrate the efficacy of our inverse design approach with several prototypical 3D structures, including variable-curvature strip and ellipsoidal surface, validated through finite element simulations and experimental trials. This strategy paves the way for advanced fabrication techniques in developing smart materials and devices with programmable shapes.

References

1.
Oliver
,
K.
,
Seddon
,
A.
, and
Trask
,
R. S.
,
2016
, “
Morphing in Nature and Beyond: A Review of Natural and Synthetic Shape-Changing Materials and Mechanisms
,”
J. Mater. Sci.
,
51
(
24
), pp.
10663
10689
.
2.
Reyssat
,
E.
, and
Mahadevan
,
L.
,
2009
, “
Hygromorphs: From Pine Cones to Biomimetic Bilayers
,”
J. R. Soc. Interface
,
6
(
39
), pp.
951
957
.
3.
Armon
,
S.
,
Efrati
,
E.
,
Kupferman
,
R.
, and
Sharon
,
E.
,
2011
, “
Geometry and Mechanics in the Opening of Chiral Seed Pods
,”
Science
,
333
(
6050
), pp.
1726
1730
.
4.
Li
,
J.-F.
,
Soldatov
,
I.-V.
,
Tang
,
X.-C.
,
Sun
,
B.-Y.
,
Schäfer
,
R.
,
Liu
,
S.-L.
,
Yan
,
Y.-Q.
,
Ke
,
H.-B.
,
Sun
,
Y.-H.
,
Orava
,
J.
, and
Bai
,
H.-Y.
,
2022
, “
Metallic Mimosa Pudica a 3D Biomimetic Buckling Structure Made of Metallic Glasses
,”
Sci. Adv.
,
8
(
31
), p.
eabm7658
.
5.
Boley
,
J. W.
,
van Rees
,
W. M.
,
Lissandrello
,
C.
,
Horenstein
,
M. N.
,
Truby
,
R. L.
,
Kotikian
,
A.
,
Lewis
,
J. A.
, and
Mahadevan
,
L.
,
2019
, “
Shape-Shifting Structured Lattices Via Multimaterial 4D Printing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
42
), pp.
20856
20862
.
6.
Gladman
,
A. S.
,
Matsumoto
,
E. A.
,
Nuzzo
,
R. G.
,
Mahadevan
,
L.
, and
Lewis
,
J. A.
,
2016
, “
Biomimetic 4D Printing
,”
Nat. Mater.
,
15
(
4
), pp.
413
418
.
7.
Qiu
,
H.
,
Feng
,
Y.
,
Gao
,
Y.
,
Zeng
,
S.
, and
Tan
,
J.
,
2021
, “
The Origami Inspired Design of Polyhedral Cells of Truss Core Panel
,”
Thin-Walled Struct.
,
163
, p.
107725
.
8.
Hann
,
S. Y.
,
Cui
,
H.
,
Nowicki
,
M.
, and
Zhang
,
L. G.
,
2020
, “
4D Printing Soft Robotics for Biomedical Applications
,”
Addit. Manuf.
,
36
, p.
101567
.
9.
Zolfagharian
,
A.
,
Kaynak
,
A.
, and
Kouzani
,
A.
,
2020
, “
Closed-Loop 4D-Printed Soft Robots
,”
Mater. Des.
,
188
, p.
108411
.
10.
Khalid
,
M. Y.
,
Arif
,
Z. U.
,
Ahmed
,
W.
,
Umer
,
R.
,
Zolfagharian
,
A.
, and
Bodaghi
,
M.
,
2022
, “
4D Printing: Technological Developments in Robotics Applications
,”
Sens. Actuat. A. Phys.
,
343
, p.
113670
.
11.
Yang
,
G. H.
,
Yeo
,
M.
,
Koo
,
Y. W.
, and
Kim
,
G. H.
,
2019
, “
4D Bioprinting: Technological Advances in Biofabrication
,”
Macromol. Biosci.
,
19
(
5
), p.
1800441
.
12.
Gao
,
B.
,
Yang
,
Q.
,
Zhao
,
X.
,
Jin
,
G.
,
Ma
,
Y.
, and
Xu
,
F.
,
2016
, “
4D Bioprinting for Biomedical Applications
,”
Trends Biotechnol.
,
34
(
9
), pp.
746
756
.
13.
Wang
,
Y.
,
Cui
,
H.
,
Esworthy
,
T.
,
Mei
,
D.
,
Wang
,
Y.
, and
Zhang
,
L. G.
,
2022
, “
Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices
,”
Adv. Mater.
,
34
(
20
), p.
2109198
.
14.
McLellan
,
K.
,
Sun
,
Y.-C.
, and
Naguib
,
H. E.
,
2022
, “
A Review of 4D Printing: Materials, Structures, and Designs Towards the Printing of Biomedical Wearable Devices
,”
Bioprinting
,
27
, p.
e00217
.
15.
Mahmud
,
M. A. P.
,
Tat
,
T.
,
Xiao
,
X.
,
Adhikary
,
P.
, and
Chen
,
J.
,
2021
, “
Advances in 4D-Printed Physiological Monitoring Sensors
,”
Exploration
,
1
(
3
), p.
20210033
.
16.
Wang
,
X.
,
Chan
,
K. H.
,
Cheng
,
Y.
,
Ding
,
T.
,
Li
,
T.
,
Achavananthadith
,
S.
,
Ahmet
,
S.
,
Ho
,
J. S.
, and
Ho
,
G. W.
,
2020
, “
Somatosensory, Light-Driven, Thin-Film Robots Capable of Integrated Perception and Motility
,”
Adv. Mater.
,
32
(
21
), p.
2000351
.
17.
Lu
,
X.
,
Ambulo
,
C. P.
,
Wang
,
S.
,
Rivera-Tarazona
,
L. K.
,
Kim
,
H.
,
Searles
,
K.
, and
Ware
,
T. H.
,
2021
, “
4D-Printing of Photoswitchable Actuators
,”
Angew. Chem. Int. Ed.
,
60
(
10
), pp.
5536
5543
.
18.
Arslan
,
H.
,
Nojoomi
,
A.
,
Jeon
,
J.
, and
Yum
,
K.
,
2019
, “
3D Printing of Anisotropic Hydrogels With Bioinspired Motion
,”
Adv. Sci.
,
6
(
2
), p.
1800703
.
19.
Ding
,
Z.
,
Weeger
,
O.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2018
, “
4D Rods: 3D Structures Via Programmable 1D Composite Rods
,”
Mater. Des.
,
137
, pp.
256
265
.
20.
Ren
,
L.
,
Li
,
B.
,
Liu
,
Q.
,
Ren
,
L.
,
Song
,
Z.
,
Zhou
,
X.
, and
Gao
,
P.
,
2021
, “
4D Printing Dual Stimuli-Responsive Bilayer Structure Toward Multiple Shape-Shifting
,”
Front. Mater.
,
8
, p.
655160
.
21.
Song
,
J.
,
Feng
,
Y.
,
Wang
,
Y.
,
Zeng
,
S.
,
Hong
,
Z.
,
Qiu
,
H.
, and
Tan
,
J.
,
2021
, “
Complicated Deformation Simulating on Temperature-Driven 4D Printed Bilayer Structures Based on Reduced Bilayer Plate Model
,”
Appl. Math. Mech.
,
42
(
11
), pp.
1619
1632
.
22.
Tang
,
J.
,
Yin
,
Q.
,
Shi
,
M.
,
Yang
,
M.
,
Yang
,
H.
,
Sun
,
B.
,
Guo
,
B.
, and
Wang
,
T.
,
2021
, “
Programmable Shape Transformation of 3D Printed Magnetic Hydrogel Composite for Hyperthermia Cancer Therapy
,”
Extreme Mech. Lett.
,
46
, p.
101305
.
23.
Zou
,
B.
,
Song
,
C.
,
He
,
Z.
, and
Ju
,
J.
,
2022
, “
Encoding of Direct 4D Printing of Isotropic Single-Material System for Double-Curvature and Multimodal Morphing
,”
Extreme Mech. Lett.
,
54
, p.
101779
.
24.
Zhen
,
D.
,
Chao
,
Y.
,
Xirui
,
P.
,
Tiejun
,
W.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2017
, “
Direct 4D Printing Via Active Composite Materials
,”
Sci. Adv.
,
3
(
4
), p.
e1602890
.
25.
Ding
,
A.
,
Lee
,
S. J.
,
Ayyagari
,
S.
,
Tang
,
R.
,
Huynh
,
C. T.
, and
Alsberg
,
E.
,
2022
, “
4D Biofabrication Via Instantly Generated Graded Hydrogel Scaffolds
,”
Bioactive Mater.
,
7
, pp.
324
332
.
26.
Zhang
,
Q.
,
Kuang
,
X.
,
Weng
,
S.
,
Zhao
,
Z.
,
Chen
,
H.
,
Fang
,
D.
, and
Qi
,
H. J.
,
2020
, “
Rapid Volatilization Induced Mechanically Robust Shape-Morphing Structures Toward 4D Printing
,”
ACS Appl. Mater. Interfaces
,
12
(
15
), pp.
17979
17987
.
27.
Kim
,
J.
,
Hanna
,
J. A.
,
Byun
,
M.
,
Santangelo
,
C. D.
, and
Hayward
,
R. C.
,
2012
, “
Designing Responsive Buckled Surfaces by Halftone Gel Lithography
,”
Science
,
335
(
6073
), pp.
1201
1205
.
28.
Liu
,
Y.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2016
, “
‘2D Or Not 2D’: Shape-Programming Polymer Sheets
,”
Prog. Polym. Sci.
,
52
, pp.
79
106
.
29.
Kang
,
S. H.
, and
Dickey
,
M. D.
,
2016
, “
Patterning Via Self-Organization and Self-Folding: Beyond Conventional Lithography
,”
Mater. Res. Bull.
,
41
(
2
), pp.
93
98
.
30.
Chen
,
Z.
,
Huang
,
G. S.
,
Trase
,
I.
,
Han
,
X. M.
, and
Mei
,
Y. F.
,
2016
, “
Mechanical Self-Assembly of a Strain-Engineered Flexible Layer: Wrinkling, Rolling, and Twisting
,”
Phys. Rev. Appl.
,
5
(
1
), p.
017001
.
31.
Pandey
,
S.
,
Ewing
,
M.
,
Kunas
,
A.
,
Nguyen
,
N.
,
Gracias
,
D. H.
, and
Menon
,
G.
,
2011
, “
Algorithmic Design of Self-Folding Polyhedra
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
50
), pp.
19885
19890
.
32.
Prinz
,
V. Y.
,
Seleznev
,
V. A.
,
Gutakovsky
,
A. K.
,
Chehovskiy
,
A. V.
,
Preobrazhenskii
,
V. V.
,
Putyato
,
M. A.
, and
Gavrilova
,
T. A.
,
2000
, “
Free-Standing and Overgrown InGaAs/GaAs Nanotubes, Nanohelices and Their Arrays
,”
Phys. E: Low-Dimen. Syst. Nanostruct.
,
6
(
1
), pp.
828
831
.
33.
Lu
,
L.
,
Leanza
,
S.
, and
Zhao
,
R. R.
,
2023
, “
Origami With Rotational Symmetry: A Review on Their Mechanics and Design
,”
ASME Appl. Mech. Rev.
,
75
(
5
), p.
050801
.
34.
Zhu
,
Y.
,
Schenk
,
M.
, and
Filipov
,
E. T.
,
2022
, “
A Review on Origami Simulations: From Kinematics, to Mechanics, Toward Multiphysics
,”
ASME Appl. Mech. Rev.
,
74
(
3
), p.
030801
.
35.
Fan
,
Z.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Double Perturbation Method of Postbuckling Analysis in 2D Curved Beams for Assembly of 3D Ribbon-Shaped Structures
,”
J. Mech. Phys. Solids.
,
111
, pp.
215
238
.
36.
Zhang
,
Y.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials
,”
Nat. Rev. Mater.
,
2
(
4
), pp.
1
17
.
37.
Jin
,
T.
,
Cheng
,
X.
,
Xu
,
S.
,
Lai
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Deep Learning Aided Inverse Design of the Buckling-Guided Assembly for 3D Frame Structures
,”
J. Mech. Phys. Solids
,
179
, p.
105398
.
38.
Liu
,
Y.
,
Yan
,
Z.
,
Lin
,
Q.
,
Guo
,
X.
,
Han
,
M.
,
Nan
,
K.
,
Hwang
,
K.-C.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation
,”
Adv. Funct. Mater.
,
26
(
17
), pp.
2909
2918
.
39.
Cheng
,
X.
,
Fan
,
Z.
,
Yao
,
S.
,
Jin
,
T.
,
Lv
,
Z.
,
Lan
,
Y.
, and
Bo
,
R.
, et al.
2023
, “
Programming 3D Curved Mesosurfaces Using Microlattice Designs
,”
Science
,
379
(
6638
), pp.
1225
1232
.
40.
Zhang
,
Z.
,
Ye
,
F.
,
Dong
,
Y.
,
Zhang
,
F.
, and
Fan
,
Z.
,
2024
, “
Post-Buckling Analysis of Arch and Serpentine Structures Under End-to-End Compression
,”
ASME J. Appl. Mech.
,
91
(
7
), p.
071001
.
41.
Song
,
H.
,
Luo
,
G.
,
Ji
,
Z.
,
Bo
,
R.
,
Xue
,
Z.
,
Yan
,
D.
, and
Zhang
,
F.
, et al.
2022
, “
Highly-Integrated, Miniaturized, Stretchable Electronic Systems Based on Stacked Multilayer Network Materials
,”
Sci. Adv.
,
8
(
11
), p.
eabm3785
.
42.
Ye
,
F.
,
Chang
,
J.
, and
Fan
,
Z.
,
2024
, “
Kirigami-Based Inverse Design for 3D Surfaces Formed by Mechanically Guided Method
,”
Thin-Walled Struct.
,
196
, p.
111462
.
43.
Yang
,
S.
, and
Sharma
,
P.
,
2023
, “
A Tutorial on the Stability and Bifurcation Analysis of the Electromechanical Behaviour of Soft Materials
,”
ASME Appl. Mech. Rev.
,
75
(
4
), p.
044801
.
44.
Hunt
,
H. E.
,
1993
, “
The Mechanical Strength of Ceramic Honeycomb Monoliths as Determined by Simple Experiments: Advanced Materials
,”
Chem. Eng. Res. Des.
,
71
(
3
), pp.
257
266
.
45.
Ziółkowski
,
B.
,
Florea
,
L.
,
Theobald
,
J.
,
Benito-Lopez
,
F.
, and
Diamond
,
D.
,
2015
, “
Porous Self-Protonating Spiropyran-Based NiPAM Gels With Improved Reswelling Kinetics
,”
J. Mater. Sci.
,
51
(
3
), pp.
1392
1399
.
46.
Fan
,
Z.
,
Yang
,
Y.
,
Zhang
,
F.
,
Xu
,
Z.
,
Zhao
,
H.
,
Wang
,
T.
,
Song
,
H.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Zhang
,
Y.
,
2020
, “
Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly
,”
Adv. Mater.
,
32
(
14
), p.
1908424
.
You do not currently have access to this content.