Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The dynamic instability of stiff films on compliant substrates has received sustained attention due to the potential applications in flexible functional devices. Film/substrate system-based devices are increasingly utilized under dynamic conditions, including dynamic sensors, tunable optical components, anti-fouling surfaces, etc. To better design the dynamic characteristics of devices based on film/substrate systems, it is essential to establish a comprehensive dynamic model and find out the deterministic and non-deterministic instability domains of nonlinear dynamic wrinkling under time-varying biased loads. In this paper, a multi-level coupling time-varying parameter excitation dynamic model for films bonded on Kelvin viscoelastic substrates is developed. The damping effect on the nonlinear dynamic responses of wrinkled film/substrate systems under step, slope and biased sinusoidal axial time-varying excitations is analyzed. We revealed and analyzed the nonlinear dynamic behavior of film/substrate systems, which are significantly influenced by the excitation frequency and viscous coefficients of substrates. Various response forms, such as excitation-following deterministic responses, chaotic responses, and double-period resonant responses, are observed. We analyzed the parametric excitation induced dynamic bifurcation of the time-varying energy barrier that causes the nonlinear dynamic phenomenon and provided deterministic and non-deterministic dynamic response domains. Based on the theory and results, methods for generating responses of specific types are proposed, offering theoretical guidance for designing dynamic characteristics of devices based on film/substrate systems.

References

1.
Li
,
C.
,
Yang
,
J. J.
,
He
,
W. J.
,
Xiong
,
M. Y.
,
Niu
,
X. S.
,
Li
,
X. Y.
, and
Yu
,
D. G.
,
2023
, “
A Review on Fabrication and Application of Tunable Hybrid Micro-Nano Array Surfaces
,”
Adv. Mater. Interfaces
,
10
(
6
), p.
2202160
.
2.
Khang
,
D. Y.
,
Jiang
,
H. Q.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2006
, “
A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates
,”
Science
,
311
(
5758
), pp.
208
212
.
3.
Bowden
,
N.
,
Brittain
,
S.
,
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
Whitesides
,
G. M.
,
1998
, “
Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer
,”
Nature
,
393
(
6681
), pp.
146
149
.
4.
Huang
,
Y.
,
Su
,
Y.
, and
Jiang
,
S.
,
2022
, “Buckling of Film-on-Substrate System in Flexible Electronics,”
Flexible Electronics: Theory and Method of Structural Design
,
Y.
Huang
,
Y.
Su
, and
S.
Jiang
, eds.,
Springer Nature
,
Singapore
, pp.
27
56
.
5.
Xue
,
P. D.
,
Chen
,
C.
, and
Diao
,
D. F.
,
2019
, “
Ultra-Sensitive Flexible Strain Sensor Based on Graphene Nanocrystallite Carbon Film With Wrinkle Structures
,”
Carbon
,
147
, pp.
227
235
.
6.
Choi
,
S.
,
Lee
,
S.
,
Lee
,
B.
,
Kim
,
T.
, and
Hong
,
Y.
,
2020
, “
Selective Crack Formation on Stretchable Silver Nano-Particle Based Thin Films for Customized and Integrated Strain-Sensing System
,”
Thin Solid Films
,
707
, p.
138068
.
7.
Ma
,
X.
,
Zhang
,
Q.
,
Guo
,
P.
,
Tong
,
X. S.
,
Zhao
,
Y. L.
, and
Wang
,
A. Y.
,
2020
, “
Residual Compressive Stress Enabled 2D-to-3D Junction Transformation in Amorphous Carbon Films for Stretchable Strain Sensors
,”
ACS Appl. Mater. Interfaces
,
12
(
40
), pp.
45549
45557
.
8.
Lee
,
J.
,
Kim
,
D.
,
Chun
,
S.
,
Song
,
J. H.
,
Yoo
,
E. S.
,
Kim
,
J. K.
, and
Pang
,
C.
,
2020
, “
Intrinsically Strain-Insensitive, Hyperelastic Temperature-Sensing Fiber With Compressed Micro-Wrinkles for Integrated Textronics
,”
Adv. Mater. Technol.
,
5
(
5
), p.
2000073
.
9.
Tang
,
X. Y.
,
Yang
,
W. D.
,
Yin
,
S. R.
,
Tai
,
G. J.
,
Su
,
M.
,
Yang
,
J.
,
Shi
,
H. F.
,
Wei
,
D. P.
, and
Yang
,
J.
,
2021
, “
Controllable Graphene Wrinkle for a High-Performance Flexible Pressure Sensor
,”
ACS Appl. Mater. Interfaces
,
13
(
17
), pp.
20448
20458
.
10.
Chen
,
W. J.
,
Gui
,
X. C.
,
Liang
,
B. H.
,
Yang
,
R. L.
,
Zheng
,
Y. J.
,
Zhao
,
C. C.
,
Li
,
X. M.
,
Zhu
,
H.
, and
Tang
,
Z. K.
,
2017
, “
Structural Engineering for High Sensitivity, Ultrathin Pressure Sensors Based on Wrinkled Graphene and Anodic Aluminum Oxide Membrane
,”
ACS Appl. Mater. Interfaces
,
9
(
28
), pp.
24111
24117
.
11.
Shen
,
Y. P.
,
Wang
,
Y. B.
,
Luo
,
Z. L.
, and
Wang
,
B. B.
,
2020
, “
Durable, Sensitive, and Wide-Range Wearable Pressure Sensors Based on Wavy-Structured Flexible Conductive Composite Film
,”
Macromol. Mater. Eng.
,
305
(
8
), p.
2000206
.
12.
Guo
,
Q. L.
,
Fang
,
Y. F.
,
Zhang
,
M.
,
Huang
,
G. S.
,
Chu
,
P. K.
,
Mei
,
Y. F.
,
Di
,
Z. F.
, and
Wang
,
X.
,
2017
, “
Wrinkled Single-Crystalline Germanium Nanomembranes for Stretchable Photodetectors
,”
IEEE Trans. Electron Devices
,
64
(
5
), pp.
1985
1990
.
13.
Harrison
,
C.
,
Stafford
,
C. M.
,
Zhang
,
W. H.
, and
Karim
,
A.
,
2004
, “
Sinusoidal Phase Grating Created by a Tunably Buckled Surface
,”
Appl. Phys. Lett.
,
85
(
18
), pp.
4016
4018
.
14.
Tan
,
A.
,
Pellegrino
,
L.
, and
Cabral
,
J. T.
,
2021
, “
Tunable Phase Gratings by Wrinkling of Plasma-Oxidized PDMS: Gradient Skins and Multiaxial Patterns
,”
ACS Appl. Polym. Mater.
,
3
(
10
), pp.
5162
5170
.
15.
Lin
,
I. T.
,
Choi
,
Y. S.
,
Wojcik
,
C.
,
Wang
,
T. S.
,
Kar-Narayan
,
S.
, and
Smoukov
,
S. K.
,
2020
, “
Electro-Responsive Surfaces With Controllable Wrinkling Patterns for Switchable Light Reflection-Diffusion-Grating Devices
,”
Mater. Today
,
41
, pp.
51
61
.
16.
Jeong
,
J. C.
,
Woo
,
K. Y.
,
Cho
,
H.
,
Cho
,
Y.-H.
,
Cho
,
N. S.
,
Yang
,
S. Y.
, and
Moon
,
J.
,
2021
, “
Extracting Internal Modes of Top Emission Organic Light Emitting Diodes by Using Internal Random Mesoscopic Wrinkles
,”
J. Ind. Eng. Chem.
,
96
, pp.
163
168
.
17.
Qi
,
H.
,
Guo
,
P.
,
Yuan
,
P. L.
,
Zang
,
S. P.
,
Ding
,
X. X.
,
Zhang
,
Y.
,
Jin
,
W. T.
,
Zhang
,
K.
, and
Chen
,
L.
,
2023
, “
Light Out-Coupling Enhancement of Blue Quantum-Dot Light-Emitting Diodes With Internal Diffraction Wrinkle Pattern
,”
Phys. Status Solidi RRL
,
17
(
10
), p.
2300173
.
18.
Chen
,
T. L.
,
Lin
,
Y. P.
,
Chien
,
C. H.
,
Chen
,
Y. C.
,
Yang
,
Y. J.
,
Wang
,
W. L.
,
Chien
,
L. F.
, and
Hsueh
,
H. Y.
,
2021
, “
Fabrication of Frog-Skin-Inspired Slippery Antibiofouling Coatings Through Degradable Block Copolymer Wrinkling
,”
Adv. Funct. Mater.
,
31
(
42
), p.
2104173
.
19.
Owais
,
A.
,
Smith-Palmer
,
T.
,
Gentle
,
A.
, and
Neto
,
C.
,
2018
, “
Influence of Long-Range Forces and Capillarity on the Function of Underwater Superoleophobic Wrinkled Surfaces
,”
Soft Matter
,
14
(
32
), pp.
6627
6634
.
20.
Wang
,
D.
,
Xu
,
L. Q.
,
Zhang
,
L.
,
Zhang
,
L. S.
, and
Zhang
,
A. M.
,
2021
, “
Hydrophobic/Superhydrophobic Reversible Smart Materials via Photo/Thermo Dual-Response Dynamic Wrinkled Structure
,”
Chem. Eng. J.
,
420
, p.
127679
.
21.
Sun
,
J. S.
,
Jiang
,
J. W.
,
Park
,
H. S.
, and
Zhang
,
S. L.
,
2018
, “
Self-Cleaning by Harnessing Wrinkles in Two-Dimensional Layered Crystals
,”
Nanoscale
,
10
(
1
), pp.
312
318
.
22.
Pocivavsek
,
L.
,
Ye
,
S. H.
,
Pugar
,
J.
,
Tzeng
,
E.
,
Cerda
,
E.
,
Velankar
,
S.
, and
Wagner
,
W. R.
,
2019
, “
Active Wrinkles to Drive Self-Cleaning: A Strategy for Anti-Thrombotic Surfaces for Vascular Grafts
,”
Biomaterials
,
192
, pp.
226
234
.
23.
Hosseinloo
,
A. H.
, and
Turitsyn
,
K.
,
2017
, “
Energy Harvesting via Wrinkling Instabilities
,”
Appl. Phys. Lett.
,
110
(
1
), p.
013901
.
24.
Kang
,
H.
,
Zhao
,
C.
,
Huang
,
J.
,
Ho
,
D. H.
,
Megra
,
Y. T.
,
Suk
,
J. W.
,
Sun
,
J.
,
Wang
,
Z. L.
,
Sun
,
Q.
, and
Cho
,
J. H.
,
2019
, “
Fingerprint-Inspired Conducting Hierarchical Wrinkles for Energy-Harvesting E-Skin
,”
Adv. Funct. Mater.
,
29
(
43
), p.
1903580
.
25.
Su
,
S.
,
Huang
,
H.
, and
Zhu
,
Z. H.
,
2021
, “
Flexoelectric Energy Harvesters Utilizing Controllably Wrinkled Micro-Dielectric Film
,”
Energy
,
224
, p.
120056
.
26.
Wu
,
W.
,
Peng
,
X.
,
Xiao
,
Y.
,
Sun
,
J.
,
Li
,
L.
,
Xu
,
Y.
,
Zhang
,
S.
,
Dong
,
K.
, and
Wang
,
L.
,
2023
, “
Stretchable Conductive-Ink-Based Wrinkled Triboelectric Nanogenerators for Mechanical Energy Harvesting and Self-Powered Signal Sensing
,”
Mater. Today Chem.
,
27
, p.
101286
.
27.
Thomsen
,
O. T.
,
1993
, “Analysis and Design of Structural Sandwich Panels Against Denting,”
Concurrent Engineering: Tools and Technologies for Mechanical System Design
,
Springer
,
New York
, pp.
821
847
.
28.
Allen
,
H. G.
,
1969
,
Analysis and Design of Structural Sandwich Panels
,
Pergamon Press
,
Oxford, UK
, pp.
156
189
.
29.
Niu
,
K. M.
, and
Talreja
,
R.
,
1999
, “
Modeling of Wrinkling in Sandwich Panels Under Compression
,”
J. Eng. Mech.
,
125
(
8
), pp.
875
883
.
30.
Li
,
K.
,
Ge
,
D.
, and
Cai
,
S.
,
2012
, “
Gravity-Induced Wrinkling of Thin Films on Soft Substrates
,”
EPL
,
100
(
5
), p.
54004
.
31.
Ou
,
Z.
,
Yao
,
X.
,
Zhang
,
X.
, and
Fan
,
X.
,
2014
, “
Wrinkling Analysis in a Film Bonded to a Compressible Compliant Substrate in Large Deformation
,”
Comput. Mater. Contin.
,
44
(
3
), pp.
205
221
.
32.
Zhou
,
Y.-N.
, and
Huang
,
G.-Y.
,
2014
, “
Buckling of Elastic Thin Films on Compliant Substrates for Determination of Surface Parameters
,”
Chin. Phys. Lett.
,
31
(
11
), p.
116202
.
33.
Coman
,
C. D.
, and
Bassom
,
A. P.
,
2016
, “
Singularities and Wrinkling: The Case of a Concentrated Force
,”
Int. J. Eng. Sci.
,
106
, pp.
229
244
.
34.
Cendula
,
P.
,
Kiravittaya
,
S.
,
Mei
,
Y. F.
,
Deneke
,
C.
, and
Schmidt
,
O. G.
,
2009
, “
Bending and Wrinkling as Competing Relaxation Pathways for Strained Free-Hanging Films
,”
Phys. Rev. B
,
79
(
8
), p.
085429
.
35.
Li
,
Y.
,
Fang
,
B.
,
Zhang
,
J.
, and
Song
,
J.
,
2012
, “
Surface Effects on the Wrinkles in a Stiff Thin Film Bonded to a Compliant Substrate
,”
Thin Solid Films
,
520
(
6
), pp.
2077
2079
.
36.
Li
,
Z.
,
Liu
,
Y.
,
Marin
,
M.
, and
Yin
,
Y.
,
2020
, “
Thickness-Dependent Wrinkling of PDMS Films for Programmable Mechanochromic Responses
,”
Nano Res.
,
13
(
7
), pp.
1882
1888
.
37.
Xu
,
F.
,
Wang
,
T.
, and
Yang
,
Y.
,
2020
, “
Wrinkling of Stretched Films: A Review
,”
Chin. Q. Mech.
,
41
(
2
), pp.
207
220
.
38.
Xue
,
Z.
,
Wang
,
C.
, and
Tan
,
H.
,
2020
, “
Articulated Surface Wrinkling of a Patterned Film With Periodic Stiffness Distribution on a Compliant Substrate
,”
Int. J. Solids Struct.
,
200
, pp.
132
144
.
39.
Wang
,
T.
,
Liu
,
F.
,
Fu
,
C.
,
Zhang
,
X.
,
Wang
,
K.
, and
Xu
,
F.
,
2021
, “
Curvature Tunes Wrinkling in Shells
,”
Int. J. Eng. Sci.
,
164
, p.
103490
.
40.
Huang
,
Z. Y.
,
Hong
,
W.
, and
Suo
,
Z.
,
2005
, “
Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate
,”
J. Mech. Phys. Solids
,
53
(
9
), pp.
2101
2118
.
41.
Jiang
,
H.
,
Khang
,
D.-Y.
,
Fei
,
H.
,
Kim
,
H.
,
Huang
,
Y.
,
Xiao
,
J.
, and
Rogers
,
J. A.
,
2008
, “
Finite Width Effect of Thin-Films Buckling on Compliant Substrate: Experimental and Theoretical Studies
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2585
2598
.
42.
Khalil
,
S.
,
Belaasilia
,
Y.
,
Hamdaoui
,
A.
,
Braikat
,
B.
,
Jamal
,
M.
,
Damil
,
N.
, and
Azari
,
Z.
,
2019
, “
ANM Analysis of a Wrinkled Elastic Thin Membrane
,”
C.R. Mec.
,
347
(
10
), pp.
701
709
.
43.
Bi
,
H. H.
,
Wang
,
B.
,
Su
,
C.
,
Zhang
,
B. H.
,
Ouyang
,
H. J.
,
Huang
,
Y. A.
, and
Deng
,
Z. C.
,
2021
, “
Buckling Behaviour of a Stiff Thin Film on a Finite-Thickness Bi-Layer Substrate
,”
Int. J. Solids Struct.
,
219
, pp.
177
187
.
44.
Sui
,
J. J.
,
Chen
,
J. B.
,
Zhang
,
X. X.
,
Nie
,
G. H.
, and
Zhang
,
T.
,
2019
, “
Symplectic Analysis of Wrinkles in Elastic Layers With Graded Stiffnesses
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011008
.
45.
Shuai
,
Y. M.
,
Zhao
,
J. Z.
,
Bo
,
R. H.
,
Lan
,
Y.
,
Lv
,
Z. Y.
, and
Zhang
,
Y. H.
,
2023
, “
A Wrinkling-Assisted Strategy for Controlled Interface Delamination in Mechanically-Guided 3D Assembly
,”
J. Mech. Phys. Solids
,
173
, p.
105203
.
46.
Chen
,
X.
, and
Hutchinson
,
J. W.
,
2004
, “
Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
597
603
.
47.
Huang
,
R.
,
2005
, “
Kinetic Wrinkling of an Elastic Film on a Viscoelastic Substrate
,”
J. Mech. Phys. Solids
,
53
(
1
), pp.
63
89
.
48.
Ou
,
Z.
,
Yao
,
X.
,
Zhang
,
X.
, and
Fan
,
X.
,
2016
, “
Dynamic Stability of Flexible Electronic Structures Under Step Loads
,”
Eur. J. Mech. A Solids
,
58
, pp.
247
255
.
49.
Ou
,
Z. C.
,
Yao
,
X. H.
, and
Zhang
,
X. Q.
,
2017
, “
Dynamic Stability of a Thin Film Bonded to a Compliant Substrate Subjected to a Step Load With Damping
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
18
(
3–4
), pp.
221
232
.
50.
Bakiler
,
A. D.
, and
Javili
,
A.
,
2020
, “
Bifurcation Behavior of Compressible Elastic Half-Space Under Plane Deformations
,”
Int. J. Non Linear Mech.
,
126
, p.
103553
.
51.
Fan
,
X.
,
Wang
,
Y.
,
Li
,
Y.
, and
Fu
,
H.
,
2020
, “
Vibration Analysis of Post-Buckled Thin Film on Compliant Substrates
,”
Sensors
,
20
(
18
), p.
5425
.
52.
Wang
,
Y.
,
Cui
,
X. B.
,
Fu
,
H. R.
,
Zhao
,
Q.
, and
Li
,
Y. H.
,
2021
, “
Dynamic Behaviors of Postbuckled Thin Film on Flexible Substrates Considering Viscoelastic Effects
,”
ASME J. Appl. Mech.
,
88
(
4
), p.
041007
.
53.
Diamant
,
H.
,
2021
, “
Parametric Excitation of Wrinkles in Elastic Sheets on Elastic and Viscoelastic Substrates
,”
Eur. Phys. J. E
,
44
(
6
), p.
78
.
54.
Wang
,
B.
,
Bi
,
H. H.
,
Ouyang
,
H. H.
,
Wang
,
Y.
, and
Deng
,
Z. C.
,
2020
, “
Dynamic Behaviour of Piezoelectric Nanoribbons With Wavy Configurations on an Elastomeric Substrate
,”
Int. J. Mech. Sci.
,
182
, p.
105787
.
55.
Mane
,
S.
, and
Huang
,
R.
,
2022
, “
Rate-Dependent Wrinkling and Subsequent Bifurcations of an Elastic Thin Film on a Viscoelastic Layer
,”
Int. J. Solids Struct.
,
257
, p.
111592
.
56.
Xu
,
Z.
,
Zhao
,
D.
,
Liu
,
J.
, and
Yin
,
Y.
,
2022
, “
Dynamic Responses and High-Energy Vibration Analysis of Flexible Resonant Curved Microbeam on a Soft Substrate
,”
J. Vib. Eng. Technol.
,
11
(
3
), pp.
977
995
.
57.
Nayfeh
,
A. H.
, and
Emam
,
S. A.
,
2008
, “
Exact Solution and Stability of Postbuckling Configurations of Beams
,”
Nonlinear Dyn.
,
54
(
4
), pp.
395
408
.
58.
Findley
,
W. N.
,
Lai
,
J. S.
, and
Onaran
,
K.
,
1976
, ““Linear Viscoelastic Constitutive Equations,”
North-Holland Series in Applied Mathematics and Mechanics
,
W. N.
Findley
,
J. S.
Lai
, and
K.
Onaran
, eds.,
North-Holland
,
Amsterdam, Netherland
, pp.
50
107
.
59.
Zeng
,
Z. H.
,
Yu
,
H. Y.
, and
Chen
,
X.
,
2021
, “
In Situ Characterization of Buckling Dynamics in Silicon Microribbon on an Elastomer Substrate
,”
Extreme Mech. Lett.
,
48
, p.
101397
.
60.
Wu
,
J. P.
,
Pang
,
H. M.
,
Ding
,
L.
,
Wang
,
Y.
,
He
,
X. K.
,
Shu
,
Q. A.
,
Xuan
,
S. H.
, and
Gong
,
X. L.
,
2021
, “
A Lightweight, Ultrathin Aramid-Based Flexible Sensor Using a Combined Inkjet Printing and Buckling Strategy
,”
Chem. Eng. J.
,
421
, p.
129830
.
61.
Ohzono
,
T.
, and
Shimomura
,
M.
,
2004
, “
Ordering of Microwrinkle Patterns by Compressive Strain
,”
Phys. Rev. B
,
69
(
13
), p.
132202
.
62.
Zhao
,
H.
, and
Su
,
Y.
,
2022
, “
Buckling of Bulk Structures With Finite Prebuckling Deformation
,”
ASME J. Appl. Mech.
,
89
(
5
), p.
051006
.
63.
Chmielowiec
,
A.
,
Wos
,
W.
, and
Gumieniak
,
J.
,
2021
, “
Viscosity Approximation of PDMS Using Weibull Function
,”
Materials
,
14
(
20
), p.
6060
.
64.
Chuzhali
,
I.
,
2020
, “VUMAT Viscoelastic,” https://www.researchgate.net/publication/342232486_VUMAT_viscoelastic
You do not currently have access to this content.