A five-layer cantilever beam consisting of an elastic core, two symmetric viscoelastic layers, and two elastic constraining layers is considered. The viscoelastic effects are incorporated in the Euler-Bernoulli beam theory. If the contraction and extension of the constraining layers is neglecterd a fourth order differential equation of motion is received. Inclusion of contraction and extension of the constraining layers results in a more accurate sixth order differential equation. Appropriate boundary conditions are derived. Laplace transforms are used extensively. Both the analytical solution and the numerical results are presented.

This content is only available via PDF.
You do not currently have access to this content.