Bed forms in channels result from the interaction between sediment transport, turbulence and gravitational settling. They document mechanisms of self-organization between flow structures and the developing structure of the bed. It is shown that these mechanisms can be characterized by length scales of the sediment, the bed form and the flow structure. Three types of interaction can be distinguished: 1) The first type of mechanisms can be observed at beds of sediment with grain diameter smaller than the typical structural dimension of turbulence. It is shown how with increasing hydraulic loading of the bed a hydraulically smooth surface develops structures, which turn from “orange peel” to stripe and arrowhead patterns and finally into ripples. This group of bed forms is limited to a grain diameter of d+=12.5 in viscous units. In the regime of the stripe structures drag reduction occurs. 2) If grains or bed forms reach a height, which leads to separation, a completely different regime prevails, which is determined by the self-organization of separation zones. A prominent example for these bed forms are dunes. 3) Demixing processes, secondary flows and roughness contrasts finally lead to the development of longitudinal and transverse banks. All three mechanisms are explained on the basis of kinematic models and documented by experimental data. Emphasis is put on the two-dimensionalization of bed forms in a highly 3-dimensional (3D) turbulent flow, which is traced back to the self organization of vortex systems. This review article contains 55 references.

1.
Perry
AE
,
Schofield
WH
, and
Joubert
N
(
1969
),
Rough wall turbulent boundary layers
,
J. Fluid Mech.
37
,
383
413
.
2.
Perry
AE
, and
Abell
CJ
(
1977
),
Asymptotic similarity of turbulence structures in smooth-and rough-walled pipes
,
J. Fluid Mech.
79
,
785
799
.
3.
Nikora V, Koll K, McLean S, Dittrich A, and Aberle J (2002), Zero-plane displacement for rough-bed open-channel flows, Proc of Int Conf on Fluvial Hydraulics, River Flow 2002, Belgium, D Bousmar and Y Zech (eds), Balkema Publishers, 1, 83–91.
4.
Gessler J (1965), Der Geschiebetrieb bei Mischungen untersucht an natu¨rlichen Abpfla¨sterungserscheinungen in Kana¨len, Mitt der VAW, ETHZ, Heft 69.
5.
Mu¨ller
A
,
Gyr
A
, and
Dracos
T
(
1971
),
Interaction of rotating elements of the boundary layer with grains of a bed: A contribution to the problem of the threshold of sediment transportation
,
J. Hydraul. Res.
9
,
372
411
.
6.
Kline SJ and Robinson SK (1989), Turbulent boundary layer structure: Progress, status, and challenges. A review of vortex structures and associated coherent motions in turbulent boundary layers, Structure of Turbulence and Drag Reduction, A Gyr (ed), Springer Verlag, Berlin-Heidelberg, 3–50.
7.
Holmes P, Lumley JL, and Berkooz G (1996), Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mech., Cambridge Univ Press.
8.
Zhou
J
,
Adrian
RJ
,
Balachandar
S
, and
Kendall
TM
(
1999
),
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,
J. Fluid Mech.
387
,
353
396
.
9.
Shields A (1936), Anwendung der A¨hnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitt der Preußischen Versuchsanstalt fu¨r Wasser-, Erd-und Schiffbau, Heft 26.
10.
Schlichting
H
(
1936
),
Experimentelle Untersuchungen zum Rauhigkeitsproblem
,
Ing.-Arch.
7
,
1
34
.
11.
Lumley JL, Blossey PN, and Podvin-Delarue, B (1999), Low dimensional models, the minimal flow unit and control, Fundamental Problematic Issues in Turbulence, A Gyr, W Kinzelbach, and A Tsinober (eds), Trends in Mathematics, Birkha¨user Verlag, 57–66.
12.
Jimene´z
J
, and
Moin
P
(
1991
),
The minimal flow unit in near-wall turbulence
,
J. Fluid Mech.
225
,
213
240
.
13.
Hage W, Bechert DW, and Bruse M (2000), Artificial shark skin on its way to technical application, Science and Art Symp 2000, A Gyr, PD Koumoutsakos, and U Burr (eds), Kluwer Academic Publ, Dordrecht, 169–175.
14.
Bruse M, Bechert DW, and Hage W (1999), The flow over riblets: Velocity measurements with hot-film probes, IUTAM Symp on Mechanics of Passive and Active Flow Control, GEA Meier and PR Viswanath (eds), Kluwer Academic Publ., 115–120.
15.
Bechert
DW
,
Bruse
M
,
Hage
W
,
van der Hoeven
JGT
, and
Hoppe
G
(
1997
),
Experiments on drag reducing surfaces and their optimisation with adjustable geometry
,
J. Fluid Mech.
338
,
59
87
.
16.
Gyr A (1999), Natural riblets, IUTAM Symp on Mechanics of Passive and Active Flow Control, GEA Meier and PR Viswanath (eds), Kluwer Academic Publ, 109–114.
17.
Liu CK, Kline SJ, and Johnston JP (1966), An experimental study of turbulent boundary layers on rough walls, Thermoscience Div, Mech Eng Dept, Stanford Univ Rep MD–15.
18.
Gyr
A
, and
Mu¨ller
A
(
1975
),
Alteration of structures of sublayer flow in dilute polymer solutions
,
Nature (London)
253
,
185
187
.
19.
Benney
DJ
, and
Lin
CC
(
1960
),
On the secondary motion induced by oscillations in a shear flow
,
Phys. Fluids
3
,
656
657
.
20.
Benney
DJ
(
1961
),
A non-linear theory for oscillations in a parallel flow
,
J. Fluid Mech.
10
,
209
236
.
21.
Landau LD (1944), Dokl. Akad. Nauk U.S.S.R. 44, 339 pp (or Landau LD and Lifschitz EM (1991), Lehrbuch der Theoretischen Physik VI, § 26, Die Stabilita¨t der stationa¨ren Stro¨mung einer Flu¨ssigkeit, Akademie Verlag, Berlin 5, Aufl, 121–125).
22.
Simons D and Sentuerk F (1977), Sediment transport technology, Water Resources Publ Fort Collins Colorado.
23.
Liu H (1957), The mechanics of sediment ripple formation, J Hydraulics Div, ASCE Proc 1197, 83 (No HY2).
24.
Hardtke P (1979), Turbulenzerzeugte Sedimentriffeln, Mitt Inst Wasserbau III, Univ Karlsruhe, Heft 47.
25.
Stehr E (1975), Grenzschicht-theoretische Studie u¨ber die Gesetze der Strombank und Riffelbildung, Hamburger Ku¨stenforschung Heft 34.
26.
Exner F (1925), U¨ber die Wechselwirkung zwischen Wasser und Geschiebe in Flu¨ssen, Akad. der Wiss in Wien, Math-Naturwissenschafliche Klasse, Sitzungsberichte, Abt IIa, 134, 165–203.
27.
Kennedy
J
(
1969
),
The formation of sediment ripples, dunes and antidunes
,
Annu. Rev. Fluid Mech.
1
,
147
168
.
28.
Richards
K
(
1980
),
The formation of ripples and dunes on an erodible bed
,
J. Fluid Mech.
99
,
597
618
.
29.
Engelund
F
, and
Fredsoe
J
(
1982
),
Sediment ripples and dunes
,
Annu. Rev. Fluid Mech.
14
,
13
37
.
30.
Raudkivi
AJ
(
1963
),
Study of sediment ripple formation
,
J. Hydr. Div. ASCE
Proc. 3692
89
,
6
15
.
31.
Grass
A
(
1970
),
Initial stability of fine bed sand
,
J. Hydraul. Div., Am. Soc. Civ. Eng.
96
, (HY2)
619
632
.
32.
Grass
A
(
1971
),
Structural features of turbulent flow over smooth and rough boundaries
,
J. Fluid Mech.
50
,
233
255
.
33.
Allen
J
(
1971
),
Bed forms due to mass transfer in turbulent flows: a kaleidoscope of phenomena
,
J. Fluid Mech.
49
,
49
63
.
34.
Williams
P
, and
Kemp
P
(
1971
),
Initiation of ripples on flat sediment bed
,
J. Hydraul. Div., Am. Soc. Civ. Eng., Proc. 8042
97
, (HY4)
505
522
.
35.
Jackson
R
(
1995
),
Sedimentological and fluid dynamic implications of the turbulent bursting phenomenon in geophysical flows
,
J. Fluid Mech.
77
,
531
566
.
36.
Schmid A (1985), Wandnahe turbulente Bewegungsabla¨ufe und ihre Bedeutung fu¨r die Riffelbildung, Diss ETHZ Nr 7697.
37.
Gyr A (2003), The self-organization of ripples towards two-dimensional forms, Sedimentation and Sediment Transport: At the Crossroads of Physics and Engineering, A Gyr and W Kinzelbach (eds), Kluwer Academic Publisher, 183–186.
38.
Grass AJ (1983), The influence of boundary layer turbulence on the mechanics of sediment transport, Proc of Euromech 156, Mechanics of Sediment Transport, BM Sumer and A Mu¨ller (eds), AA Balkema, 3–17.
39.
Grass
AJ
,
Stuart
RJ
, and
Mansour-Tehrani
M
(
1991
),
Vortical structure and coherent motion in turbulent flow over smooth and rough boundaries
,
Philos. Trans. R. Soc. London, Ser. A
A336
,
35
65
.
40.
Grass AJ and Mansour-Tehrani M (1996), Generalized scaling of coherent bursting structures in the near-wall region on turbulent flow over smooth and rough boundaries, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best, and SJ McLelland (eds), John Wiley and Sons Ltd, 41–61.
41.
Mu¨ller A and Studerus X (1979), Secondary flow in an open channel,. Proc of 18th IAHR Congress, 3, 19–24.
42.
Studerus X (1982), Sekunda¨rstro¨mungen im offenen Gerinne u¨ber rauhen La¨ngsstreifen, Diss ETHZ Nr 7035.
43.
Nakagawa H, Nezu I and Tominaga A (1981) Spanwise streaky structure and macroturbulence in open channel flows, Mem Fac Eng, Kyoto Univ 43-1, 34–67.
44.
Nezu I and Rodi (1985) Experimental study on secondary currents in open channel flows, Proc of 21st IAHR Congress, 2, 115–119.
45.
Townsend AA (1976) The Structure of Turbulent Shear Flow, 2nd Edition, Cambridge Univ Press.
46.
Tsujimoto T and Kitamura T (1996), Interaction between cellular secondary currents and lateral alternate sorting, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best, and SJ McLelland (eds), John Wiley and Sons Ltd, 359–374.
47.
Defina A (1996), Transverse spacing of low-speed streaks in a channel flow over a rough bed, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best, and SJ McLelland (eds), John Wiley and Sons Ltd, 87–99.
48.
Fu¨hrbo¨ter A (1980), Stromba¨nke (Grossriffel) und Du¨nen als Stabilisierungsformen, Mitt Leichtweiss Inst TU Braunschweig 67.
49.
Raudkivi AJ (1982), Grundlagen des Sedimenttransportes, Springer Verlag.
50.
Mu¨ller A and Gyr A (1996) Geometrical analysis of the feedback between flow, bedforms and sediment transport, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best and SJ McLelland (eds), John Wiley and Sons Ltd, 237–247.
51.
Mu¨ller A and Gyr A (1983), Visualisation of the mixing layer behind dunes, Mechanics of Sediment Transport, Proc EUROMECH 156, BM Sumer and A Mu¨ller (eds), AA Balkema, 41–45.
52.
Mu¨ller
A
, and
Gyr
A
(
1986
),
On the vortex formation in the mixing layer behind dunes
,
J. Hydraul. Res.
24
,
359
375
.
53.
Lesieur MR (1995), Mixing layer vortices, Fluid vortices, SI Green (ed) Kluwer Acad Publ 35–63.
54.
Sidorchuk A (1996), The structure of river bed relief, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best, and SJ McLelland (eds), John Wiley and Sons Ltd, 397–421.
55.
Alam AMZ, Cheyer TD, and Kennedy JF (1996), Friction factors for flow in sand bed channels, MIT Hydrodynamics Lab, Rept No 78.
You do not currently have access to this content.