The purpose of Part 1 of this paper is to provide a review of recent results from 1991 through 2003 in the area of theoretical aspects of statistical and equivalent linearization in the analysis of structural and mechanical nonlinear stochastic dynamic systems. First, a discussion about misunderstandings appearing in the literature in derivation of linearization coefficients for mean-square linearization criterion is presented. In Secs. 3–6 new theoretical results, including new types of criteria, nonlinearities, and excitations in the context of linearization methods, are reviewed. In particular, moment criteria called energy criteria, linearization criteria in the space of power spectral density functions and probability density functions are discussed. A survey of a wide class of so-called nonlinearization techniques, including equivalent quadratization and equivalent cubicization methods, is given in Sec. 7. New linearization techniques for nonlinear stochastic systems with parametric Gaussian excitations and external non-Gaussian excitations are discussed in Secs. 8 and 9, respectively. In the last sections, four surveys of papers where stochastic linearization is used as a mathematical tool in other theoretical approaches, namely, models of dynamic systems with hysteresis, finite element method, and control of nonlinear stochastic systems and linearization with sensitivity analysis, are given. A discussion of the accuracy analysis of linearization techniques and some general conclusions close this paper. There are 217 references cited in this revised article.

1.
Booton, R. C., 1953, “The Analysis of Nonlinear Central Systems With Random Inputs,” Proc. Symp. on Nonlinear Circuit Analysis, Polytechnic Institute of Brooklyn, and also (1954), IRE Transactions on Circuit Theory 1, pp. 32–34.
2.
Kazakov
,
I. E.
,
1954
, “
An Approximate Method for the Statistical Investigation of Nonlinear Systems” (in Russian
),
Trudi Voenna-Vozdushnoi Inzhenernoi Akademii imeni Professora N. E. Zhukowskogo
,
394
, pp.
1
52
.
3.
Kazakov
,
I. E.
,
1956
, “
Approximate Probabilistic Analysis of the Accuracy of the Operation of Essentially Nonlinear Systems
,”
Avtom. Telemekh.
,
17
, pp.
423
450
.
4.
Caughey
,
T. K.
,
1959
, “
Response of Nonlinear String to Random Loading
,”
ASME J. Appl. Mech.
,
26
, pp.
341
344
.
5.
Caughey
,
T. K.
,
1963
, “
Equivalent Linearization Techniques
,”
J. Acoust. Soc. Am.
,
35
, pp.
1706
1711
. Reference is made to presentations in Cal Tech Lectures in 1953.
6.
Spano
,
P. T.
,
1981
, “
Stochastic Linearization in Structural Dynamics
,”
Appl. Mech. Rev.
,
34
, pp.
1
8
.
7.
Roberts
,
J. B.
,
1981
, “
Response of Nonlinear Mechanical Systems to Random Excitation, Part 2: Equivalent Linearization and Other Methods
,”
Shock Vib. Dig.
,
13
, pp.
15
29
.
8.
Crandall
,
S. H.
, and
Zhu
,
W. Q.
,
1983
, “
Random Vibration: A Survey of Recent Developments
,”
ASME J. Appl. Mech.
,
50
, pp.
953
962
.
9.
Roberts, J. B., and Spanos, P. D. T., 1990, Random Vibration and Statistical Linearization, Wiley, Chichester.
10.
Socha
,
L.
, and
Soon
,
T. T.
,
1991
, “
Linearization in Analysis of Nonlinear Stochastic Systems
,”
Appl. Mech. Rev.
,
44
, pp.
399
422
.
11.
Newland, D. E., 1993, “An Introduction to Random Vibrations, Spectral and Wavelet Analysis,” 3rd Ed., Longman Scientific and Technical, Burnt Mill, Harlow, Essex.
12.
Soong, T. T., and Grigoriu, M., 1993, Random Vibration of Mechanical and Structural Systems, PTR, Prentice-Hall, Englewood Cliffs, NJ.
13.
Nigam, N. C., and Narayanan, S., 1994, Applications of Random Vibrations, Narosa Publishing House, New Dehli.
14.
Lin, Y. K., and Cai, G. Q., 1995, Probabilistic Structural Dynamics Advances Theory and Applications, McGraw-Hill, New York.
15.
Lutes, L. D., and Sarkani, S., 1997, Stochastic Analysis of Structural and Mechanical Vibrations, Prentice-Hall, Upper Saddle River, NJ.
16.
Solnes, J., 1997, Stochastic Processes and Random Vibrations Theory and Practice, Wiley, Chichester.
17.
Elishakoff
,
I.
,
1995
, “
Random Vibration of Structures: A Personal Perspective
,”
Appl. Mech. Rev.
,
48
, pp.
809
825
.
18.
Elishakoff
,
I.
,
2000
, “
Stochastic Linearization Technique: A New Interpretation and a Selective Review
,”
Shock Vib. Dig.
,
32
, pp.
179
188
.
19.
Proppe
,
C.
,
Pradlwarter
,
H. J.
, and
Schueller
,
G. I.
,
2003
, “
Equivalent Linearization and Monte Carlo Simulation in Stochastic Dynamics
,”
Probab. Eng. Mech.
,
18
, pp.
1
15
.
20.
Socha
,
L.
,
2004
, “
Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part II: Applications
,”
Appl. Mech. Rev.
, (in press).
21.
Socha
,
L.
, and
Pawleta
,
M.
,
1994
, “
Corrected Equivalent Linearization
,”
Machine Dynamics Problems
,
7
, pp.
149
161
.
22.
Elishakoff
,
I.
, and
Colojani
,
P.
,
1997
, “
Stochastic Linearization Critically Re-examined
,”
Chaos, Solitons Fractals
,
8
, pp.
1957
1972
.
23.
Colojani
,
P.
, and
Elishakoff
,
I.
,
1998
, “
A Subtle Error in Conventional Stochastic Linearization Techniques
,”
Chaos, Solitons Fractals
,
9
, pp.
479
491
.
24.
Colojani
,
P.
, and
Elishakoff
,
I.
,
1998
, “
A New Look at the Stochastic Linearization Technique for Hyperbolic Tangent Oscillator
,”
Chaos, Solitons Fractals
,
9
, pp.
1611
1623
.
25.
Elishakoff
,
I.
, and
Colojani
,
P.
,
1998
, “
Booton’s Problem Re-examined
,”
J. Sound Vib.
,
210
, pp.
683
691
.
26.
Bernard
,
P.
, and
Wu
,
L.
,
1998
, “
Stochastic Linearization: The Theory
,”
J. Appl. Probab.
,
35
, pp.
718
730
.
27.
Bernard
,
P.
,
1998
, “
Stochastic Linearization: What is Available What is not
,”
Computers and Structures
,
67
, pp.
9
18
.
28.
Socha, L., and Pawleta, M., 1999, “Some Remarks on Equivalent Linearization of Stochastic Systems,” Stochastic Structural Dynamics, B. F. Spencer and E. A. Johnson, eds., Balkema, Rotterdam, pp. 105–112.
29.
Crandall
,
S. H.
,
2001
, “
Is Stochastic Equivalent Linearization a Subtly Flawed Procedure
,”
Probab. Eng. Mech
,
16
, pp.
169
176
.
30.
Crandall, S. H., 1980, “On Statistical Linearization For Nonlinear Oscillators,” Nonlinear System Analysis and Synthesis, R. V. Rammath, J. K. Hedrick and H. M. Paynter, eds., Am. Soc. Mech. Engrg., New York, pp. 199–209.
31.
Crandall, S. H., 2003, “On Using Non-Gaussian Distributions to Perform Statistical Linearization,” Advances in Stochastic Structural Dynamics, W. Q. Zhu, G. Q. Cai and R. C. Zhang, eds., CRC Press, Boca Raton, pp. 49–62.
32.
Bernard, P., 2003, “Stochastic Linearization: True Standard or Gaussian,” Computational Stochastic Mechanics, P. D. Spanos and G. Deodatis, eds., Millpress, Rotterdam, pp. 59–66.
33.
Socha
,
L.
, and
Pawleta
,
M.
,
2001
, “
Are Statistical Linearization and Standard Equivalent Linearization the Same Methods in the Analysis of Stochastic Dynamic Systems
,”
J. Sound Vib.
,
248
, pp.
387
394
.
34.
Anh
,
N. D.
, and
Hung
,
L. X.
,
2003
, “
An Improved Criterion of Gaussian Equivalent Linearization for Analysis of Nonlinear Stochastic Systems
,”
J. Sound Vib.
,
268
, pp.
177
200
.
35.
Pawleta
,
M.
,
1991
, “
Stochastic Linearization of Composite Dynamic Systems,” (in Polish)
J. Theor. Appl. Mech.
,
29
, pp.
355
375
.
36.
Anh, N. D., and DiPaola, M., 1995, “Some Extensions of Gaussian Equivalent Linearization,” Proc. of Int. Conference on Nonlinear Stochastic Dynamics, Hanoi, Vietnam, pp. 5–15.
37.
Pradlwarter
,
H. J.
,
2001
, “
Nonlinear Stochastic Response Distributions by Local Statistical Linearization
,”
Int. J. Non-Linear Mech.
,
36
, pp.
1135
1151
.
38.
Kazakov
,
I. E.
,
1998
, “
An Extension of the Method of Statistical Linearization
,”
Avtomatika i Telemekhanika
,
59
, pp.
220
224
.
39.
Lee
,
J.
,
1995
, “
Improving the Equivalent Linearization Technique for Stochastic Duffing Oscillators
,”
J. Sound Vib.
,
186
, pp.
846
855
.
40.
Grundmann
,
H.
,
Hartmann
,
C.
, and
Waubke
,
H.
,
1998
, “
Structures Subjected to Stationary Stochastic Loadings. Preliminary Assessment by Statistical Linearization Combined With an Evolutionary Algorithm
,”
Comput. Struct.
,
67
, pp.
53
64
.
41.
Suzuki, Y., and Minai, R., 1987, Application of Stochastic Differential Equations to Seismic Reliability Analysis of Hysteretic Structures, (Lecture Notes in Eng., Vol. 32), Springer, New York.
42.
Davis, G. L., and Spanos, P. D., 1999, “Developing Force-Limited Random Vibration Test Specifications for Nonlinear Systems Using the Frequency-Shift Method,” Proc. of 40th AIAA/SDM Conference, St. Louis, 4/12-15/99, pp. 1688–1698.
43.
Isidori, A., 1989, Nonlinear Control Systems: An Introduction, 2nd Ed., Springer, Berlin.
44.
Socha
,
L.
,
1994
, “
Some Remarks on Exact Linearization of a Class of Stochastic Dynamical Systems
,”
IEEE Trans. Autom. Control
,
39
, pp.
1980
1984
.
45.
Naess
,
A.
,
Galeazzi
,
F.
, and
Dogliani
,
M.
,
1992
, “
Extreme Response Predictions of Nonlinear Compliant Offshore Structures by Stochastic Linearization
,”
Appl. Aciean. Res.
,
14
, pp.
71
81
.
46.
Anh
,
N. D.
, and
Schiehlen
,
W.
,
1999
, “
A Technique for Obtaining Approximate Solutions in Gaussian Equivalent Linearization
,”
Comput. Methods Appl. Mech. Eng.
,
168
, pp.
113
119
.
47.
Anh
,
N. D.
, and
Schiehlen
,
W.
,
1997
, “
New Criterion for Gaussian Equivalent Linearization
,”
Eur. J. Mech. A/Solids
,
16
, pp.
1025
1039
.
48.
Beaman
,
J. J.
, and
Hedrick
,
J. K.
,
1981
, “
Improved Statistical Linearization for Analysis of Control of Nonlinear Stochastic Systems: Part I: An Extended Statistical Linearization Technique
,”
ASME J. Dyn. Syst., Meas., Control
,
101
, pp.
14
21
.
49.
Chen, G., 1999, “Cascade Linearization of Nonlinear System Subjected to Gaussian Excitations,” Stochastic Structural Dynamics, B. F. Spencer and E. A. Johnson, eds., Balkema, Rotterdam, pp. 69–76.
50.
Duval, L., et al. 1999, “Zero and Non-Zero Mean Analysis of MDOF Hysteretic Systems Via Direct Linearization,” Stochastic Structural Dynamics, B. F. Spencer and E. A. Johnson, Balkema, Rotterdam, pp. 77–84.
51.
Molnar
,
A. J.
,
Vaschi
,
K. M.
, and
Gay
,
C. W.
,
1976
, “
Application of Normal Mode Theory of Pseudo Force Methods to Solve Problems With Nonlinearities
,”
ASME J. Pressure Vessel Technol.
,
98
, pp.
151
156
.
52.
Benfratello
,
S.
,
1996
, “
Pseudo-Force Method for a Stochastic Analysis of Nonlinear Systems
,”
Probab. Eng. Mech.
,
11
, pp.
113
123
.
53.
Uchino
,
E.
,
Ohta
,
M.
, and
Takata
,
H.
,
1993
, “
A New State Estimation Method for a Quantized Stochastic Sound System Based on a Generalized Statistical Linearization
,”
J. Sound Vib.
,
160
, pp.
193
203
.
54.
Iyengar
,
R. N.
, and
Roy
,
D.
,
1996
, “
Conditional Linearization in Nonlinear Random Vibration
,”
J. Eng. Mech.
,
119
, pp.
197
200
.
55.
Spanos
,
P. T. D.
, and
Iwan
,
W. D.
,
1979
, “
Harmonic Analysis of Dynamic Systems With Non-Symmetric Nonlinearities
,”
ASME J. Dyn. Syst., Meas., Control
,
101
, pp.
31
36
.
56.
Iyengar
,
R. N
, and
Roy
,
D.
,
1998
, “
New Approaches for the Study of Nonlinear Oscillators
,”
J. Sound Vib.
,
211
, pp.
843
875
.
57.
Iyengar
,
R. N.
, and
Roy
,
D.
,
1998
, “
Extensions of the Phase Space Linearization Method
,”
J. Sound Vib.
,
211
, pp.
877
906
.
58.
Roy
,
D.
,
2000
, “
Exploration of the Phase-Space Linearization Method for Deterministic and Stochastic Nonlinear Dynamical Systems
,”
Nonlinear Dyn.
,
23
, pp.
225
258
.
59.
Casciati
,
F.
,
Faravelli
,
L.
, and
Hasofer
,
A. M.
,
1993
, “
A New Philosophy for Stochastic Equivalent Linearization
,”
Probab. Eng. Mech.
,
8
, pp.
179
185
.
60.
Bouc
,
R.
,
1994
, “
The Power Spectral Density of Response for a Strongly Nonlinear Random Oscillator
,”
J. Sound Vib.
,
175
, pp.
317
331
.
61.
Ismaili
,
M. A.
, and
Bernard
,
P.
,
1997
, “
Asymptotic Analysis and Linearization of the Randomly Perturbed Two-Wells Duffing Oscillator
,”
Probab. Eng. Mech.
,
12
, pp.
171
178
.
62.
Ricciardi
,
G.
, and
Elishakoff
,
I.
,
2002
, “
A Novel Local Stochastic Linearization Method Via Two Extremum Entropy Principles
,”
Int. J. Non-Linear Mech.
,
37
, pp.
785
800
.
63.
Socha
,
L.
,
1995
, “
Moment Equivalent Linearization Technique
,”
Z. Angew. Math. Mech.
,
75, SII
, pp.
577
578
.
64.
Cheded
,
L.
,
2003
, “
Invariance Property: Higher-Order Extension and Application to Gaussian Random Variables
,”
Signal Process.
,
83
, pp.
1545
1551
.
65.
Zhang, X. T., Elishakoff, I., and Zhang, R. Ch., 1991, “A New Stochastic Linearization Technique Based on Minimum Mean-Square Deviation of Potential Energies,” Stochastic Structural Dynamics—New Theoretical Developments, Y. K. Lin and I. Elishakoff, eds., Springer-Verlag, Berlin, pp. 327–338.
66.
Elishakoff, I., and Falsone, G., 1993, “Some Recent Developments in Stochastic Linearization Technique,” Computational Stochastic Mechanics, A. H. Cheng and C. Y. Yang, eds., Computational Mechanics Publication, Southampton, N. Y., pp. 175–194.
67.
Falsone
,
G.
, and
Elishakoff
,
I.
,
1994
, “
Modified Stochastic Linearization Technique for Coloured Noise Excitation of Duffing Oscillator
,”
Int. J. Non-Linear Mech.
,
29
, pp.
65
69
.
68.
Elishakoff, I., and Zhang, R. C., 1991, Comparison of the New Energy-Based Version of the Stochastic Linearization Technique, Nonlinear Stochastic Mechanics, N. Bellomo and F. Casciati, eds., Springer, Berlin, pp. 201–212.
69.
Elishakoff
,
I.
, and
Zhang
,
X. T.
,
1992
, “
An Appraisal of Different Stochastic Linearization Criteria
,”
J. Sound Vib.
,
153
, pp.
370
375
.
70.
Elishakoff
,
I.
, and
Colombi
,
P.
,
1993
, “
Successful Combination of the Stochastic Linearization and Monte Carlo Methods
,”
J. Sound Vib.
,
160
, pp.
554
558
.
71.
Elishakoff, I., 1991, “Method of Stochastic Linearization: Revisited and Improved,” Computational Stochastic Mechanics, P. D. Spanos and C. A. Brebbia, eds., Computational Mechanics Publication and Elsevier Applied Science, London, pp. 101–111.
72.
Elishakoff, I., 1995, “Some Results in Stochastic Linearization of Nonlinear Systems,” Nonlinear Dynamics and Stochastic Mechanics, W. H. Klieman and N. Namachchivaya, CRC Press, Boca Raton, pp. 259–281.
73.
Zhang
,
X. T.
,
Zhang
,
R. C.
, and
Xu
,
Y. L.
,
1993
, “
Analysis on Control of Flow-Induced Vibration by Tuned Liquid Damper With Crossed TubeLike Containers
,”
J. Wind. Eng. Ind. Aerodyn.
,
50
, pp.
351
360
.
74.
Zhang
,
R.
,
Elishakoff
,
I.
, and
Shinozuka
,
M.
,
1994
, “
Analysis of Nonlinear Sliding Structures by Modified Stochastic Linearization Methods
,”
Nonlinear Dyn.
,
5
, pp.
299
312
.
75.
Fang
,
J.
,
Elishakoff
,
I.
, and
Caimi
,
R.
,
1995
, “
Nonlinear Response of a Beam Under Stationary Random Excitation by Improved Stochastic Linearization Method
,”
Appl. Math. Model.
,
19
, pp.
106
111
.
76.
Elishakoff
,
I.
,
Fang
,
J.
, and
Caimi
,
R.
,
1995
, “
Random Vibration of a Nonlinearly Deformed Beam by a New Stochastic Linearization Technique
,”
Int. J. Solids Struct.
,
32
, pp.
1571
1584
.
77.
Elishakoff, I., and Bert, C., 1999, “Complementary Energy Criterion in Nonlinear Stochastic Dynamics,” Application of Stochastic and Probability, R. L. Melchers and M. G. Steward, eds., A. A. Balkema, Rotterdam, pp. 821–825.
78.
Elishakoff
,
I.
,
2000
, “
Multiple Combinations of the Stochastic Linearization Criteria by the Moment Approach
,”
J. Sound Vib.
,
237
, pp.
550
559
.
79.
Zhang, X. T., and Zhang, R. C., 1999, “Energy-Based Stochastic Equivalent Linearization With Optimized Power,” Stochastic Structural Dynamics, B. F. Spencer and E. A. Johnson, eds., Balkema, Rotterdam, pp. 113–117.
80.
Zhang
,
R. C.
,
2000
, “
Work/Energy-Based Stochastic Equivalent Linearization With Optimized Power
,”
J. Sound Vib.
,
230
, pp.
468
475
.
81.
Wang
,
G. Y.
, and
Dai
,
M.
,
2001
, “
Equivalent Linearization Method Based on Energy-to cth-Power Difference Criterion in Nonlinear Stochastic Vibration Analysis of Multi-Degree-of-Freedom Systems
,”
Appl. Math. Mech.
,
22
, pp.
947
955
.
82.
Crandall
,
S.
,
1973
, “
Correlations and Spectra of Nonlinear System Response
,”
Nonlinear Vibration Problems
,
14
, pp.
39
53
.
83.
Apetaur
,
M.
, and
Opicka
,
F.
,
1983
, “
Linearization of Nonlinear Stochastically Excited Dynamic Systems
,”
J. Sound Vib.
,
86
, pp.
563
585
.
84.
Bellizzi, S., and Bouc, R., 1995, “Spectral Response of Asymetrical Random Oscillators,” Computational Stochastic Mechanics, P. D. Spanos, eds., A. A. Balkema, Rotterdam, pp. 77–86.
85.
Bellizzi
,
S.
, and
Bouc
,
R.
,
1996
, “
Spectral Response of Asymetrical Random Oscillators
,”
Probab. Eng. Mech.
,
11
, pp.
51
59
.
86.
Bellizzi
,
S.
, and
Bouc
,
R.
,
1999
, “
Analysis of Multi-Degree of Freedom Strongly Nonlinear Mechanical Systems With Random Input: Part II: Equivalent Linear System With Random Matrices and Spectral Density Matrix
,”
Probab. Eng. Mech.
,
14
, pp.
245
256
.
87.
Bernard, P., 1991, “About Stochastic Linearization,” Nonlinear Stochastic Mechanics, N. Bellomo and F. Casciati, eds., Springer, Berlin, pp. 61–70.
88.
Bernard
,
P.
, and
Taazount
,
M.
,
1994
, “
Random Dynamics of Structures With Gaps: Simulation and Spectral Linearization
,”
Nonlinear Dyn.
,
5
, pp.
313
335
.
89.
Ismaili
,
M. A.
,
1996
, “
Design of a System of Linear Oscillators Spectrally Equivalent to a Nonlinear One
,”
Int. J. Non-Linear Mech.
,
31
, pp.
573
580
.
90.
Socha, L., 1995, “Application of Probability Metrics to the Linearization and Sensitivity Analysis of Stochastic Dynamic Systems,” Proc. of Int. Conference on Nonlinear Stochastic Dynamics, Hanoi, Vietnam, pp. 193–202.
91.
Socha
,
L.
,
1998
, “
Probability Density Equivalent Linearization Technique for Nonlinear Oscillator With Stochastic Excitations
,”
Z. Angew. Math. Mech.
,
78
(
S3
), pp.
1087
1088
.
92.
Socha
,
L.
,
1999
, “
Probability Density Equivalent Linearization and Nonlinearization Techniques
,”
Arch. Mech.
,
51
, pp.
487
507
.
93.
Socha
,
L.
,
1999
, “
Statistical and Equivalent Linearization Techniques with Probability Density Criteria
,”
J. Theor. Appl. Mech.
,
37
, pp.
369
382
.
94.
Socha
,
L.
,
2002
, “
Probability Density Statistical and Equivalent Linearization Techniques
,”
Int. J. Syst. Sci.
,
33
, pp.
107
127
.
95.
Socha, L., 1999, “Application of Probability Metrics to the Nonlinearization Analysis,” Stochastic Structural Dynamics, B. F. Spencer and E. A. Johnson, eds., Balkema, Rotterdam, pp. 99–104.
96.
Socha, L., and Błachuta, M., 2000, “Application of Linearization Methods With Probability Density Criteria in Control Problems,” Proc. of American Control Conference, Chicago, CD-ROM 4, Danvers, MA, pp. 2775–2779.
97.
Socha
,
L.
,
2001
, “
Statistical Linearization of the Duffing Oscillator Under Non-Gaussian Excitations in Probability Density Functions Space
,”
Z. Angew. Math. Mech.
,
81
(
S3
), pp.
647
648
.
98.
Lutes
,
L. D.
,
1970
, “
Approximate Technique for Treating Random Vibration of Hysteretic Systems
,”
J. Acoust. Soc. Am.
,
48
, pp.
299
306
.
99.
To
,
C. W. S.
, and
Li
,
D. M.
,
1991
, “
Equivalent Nonlinearization of Nonlinear Systems to Random Excitations
,”
Probab. Eng. Mech.
,
6
, pp.
184
192
.
100.
Cai
,
C. Q.
, and
Lin
,
Y. K.
,
1988
, “
A New Approximate Solution Technique for Randomly Excited Nonlinear Oscillators
,”
Int. J. Non-Linear Mech.
,
23
, pp.
409
420
.
101.
Elishakoff
,
I.
, and
Cai
,
G. Q.
,
1993
, “
Approximate Solution for Nonlinear Random Vibration Problems by Partial Stochastic Linearization
,”
Probab. Eng. Mech.
,
8
, pp.
233
237
.
102.
To
,
C. W. S.
,
1993
, “
A Statistical Nonlinearization Technique in Structural Dynamics
,”
J. Sound Vib.
,
161
, pp.
543
548
.
103.
Polidori
,
D. C.
, and
Beck
,
J. L.
,
1996
, “
Approximate Solutions for Nonlinear Random Vibration Problems
,”
Probab. Eng. Mech.
,
11
, pp.
179
185
.
104.
Polidori
,
D. C.
,
Beck
,
J. L.
, and
Papadimitriou
C.
,
2000
, “
A New Stationary PDF Approximation for Nonlinear Oscillators
,”
Int. J. Non-Linear Mech.
,
35
, pp.
657
673
.
105.
Lei
,
Z.
, and
Qiu
,
C.
,
1996
, “
A New Equivalent Nonlinearization Method for Random Vibrations of Nonlinear Systems
,”
Mech. Res. Commun.
,
23
, pp.
131
136
.
106.
Lei
,
Z.
, and
Qiu
,
C.
,
1997
, “
An Equivalent Nonlinearization Method for Analyzing Response of Nonlinear Systems to Random Excitations
,”
Appl. Math. Mech.
,
18
, pp.
551
561
.
107.
Cavaleri
,
L.
, and
Di-Paola
,
M.
,
2000
, “
Statistic Moments of the Total Energy of Potential Systems and Application to Equivalent Nonlinearization
,”
Int. J. Non-Linear Mech.
,
35
, pp.
573
587
.
108.
Wang
,
R.
,
Kusumoto
,
S.
, and
Zhang
,
Z.
,
1996
, “
A New Equivalent Nonlinearization Technique
,”
Probab. Eng. Mech.
,
11
, pp.
129
137
.
109.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Suzuki
,
Y.
,
2001
, “
Equivalent Nonlinear System Method for Stochastically Excited and Dissipated Partially Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
,
36
, pp.
773
786
.
110.
Zhao
,
L.
, and
Chen
,
Q.
,
1997
, “
An Equivalent Nonlinearization Method for Analyzing Response of Nonlinear Systems to Random Excitations
,”
Appl. Math. Mech.
,
18
, pp.
551
561
.
111.
Zhao
,
L.
, and
Chen
,
Q.
,
1996
, “
A New Equivalent Nonlinearization Method for Random Vibrations of Nonlinear Systems
,”
Mech. Res. Commun.
,
23
, pp.
131
136
.
112.
Donley, M. G., and Spanos, P. D., 1990, Dynamic Analysis of Nonlinear Structures by the Method of Statistical Quadratization (Lecture Notes in Engineering, Vol. 37), Springer, New York, pp. 1–172.
113.
Spanos
,
P. D.
, and
Donley
,
M. G.
,
1991
, “
Equivalent Statistical Quadratization for Nonlinear System
,”
J. Eng. Mech.
,
117
, pp.
1289
1310
.
114.
Spanos
,
P. D.
, and
Donley
,
M. G.
,
1992
, “
Nonlinear Multi-Degree-of-Freedom System Random Vibration by Equivalent Statistical Quadratization
,”
Int. J. Non-Linear Mech.
,
27
, pp.
735
748
.
115.
Tognarelli
,
M. A.
,
Zhao
,
J.
,
Rao
,
K. B.
, and
Kareem
,
A.
,
1997
, “
Equivalent Statistical Quadratization and Qubicization for Nonlinear System
,”
J. Eng. Mech.
,
123
, pp.
512
523
.
116.
Quek
,
S. T.
,
Li
,
X. M.
, and
Koh
,
C. G.
,
1994
, “
Stochastic Response of Jack-Up Platform by the Method for Statistical Quadratization
,”
Appl. Ocean. Res.
,
16
, pp.
113
122
.
117.
Li
,
X. M.
,
Quek
,
S. T.
, and
Koh
,
C. G.
,
1995
, “
Stochastic Response of Offshore Platform by Statistical Cubization
,”
J. Eng. Mech.
,
121
, pp.
1056
1068
.
118.
Fatica
,
G.
, and
Floris
,
C.
,
2003
, “
Moment Equation Analysis of Base-isolated Buldings Subjected to Support Motion
,”
J. Eng. Mech.
,
129
, pp.
94
106
.
119.
Kareem
,
A.
, and
Zhao
,
J.
,
1994
, “
Analysis of Non-Gaussian Surge Response of Tension Leg Platforms Under Wind Loads
,”
J. Offshore Mech. Arctic Eng.
,
116
, pp.
137
144
.
120.
Kareem
,
A.
,
Zhao
,
J.
, and
Tognarelli
,
M. A.
,
1995
, “
Surge Response Statistics of Tension Leg Platforms Under Wind and Wave Loads: Statistical Quadratization Approach
,”
Probab. Eng. Mech.
,
10
, pp.
225
240
.
121.
Bedrosian
,
E.
, and
Rice
,
S.
,
1971
, “
The Outpost Properties of Volterra Systems (Nonlinear Systems With Memory) Driven by Harmonic and Gaussian Inputs
,”
Proc. IEEE
,
59
, pp.
1688
1707
.
122.
Tognarelli
,
M. A.
,
Zhao
,
J.
, and
Kareem
,
A.
,
1997
, “
Equivalent Statistical Qubicization for System and Forcing Nonlinearization
,”
J. Eng. Mech.
,
123
, pp.
890
893
.
123.
Spanos
,
P. D.
,
Di Paola
,
M.
, and
Failla
,
G.
,
2002
, “
A Galerkin Approach for Power Spectrum Determination for Nonlinear Oscillators
,”
Meccanica
,
37
, pp.
51
65
.
124.
Krenk
,
S.
, and
Roberts
,
J. B.
,
1999
, “
Local Similarity in Nonlinear Random Vibration
,”
ASME J. Appl. Mech.
,
66
, pp.
225
235
.
125.
Rudinger
,
F.
, and
Krenk
,
S.
,
2003
, “
Spectral Density of an Oscillator With Power Law Damping Excited by White Noise
,”
J. Sound Vib.
,
261
, pp.
365
371
.
126.
Caughey
,
T. K.
,
1986
, “
On the Response of Nonlinear Oscillators to Stochastic Excitation
,”
Probab. Eng. Mech.
,
1
, pp.
2
4
.
127.
Chang
,
R. J.
,
1991
, “
A Practical Technique for Spectral Analysis of Nonlinear Systems Under Stochastic Parametric and External Excitations
,”
ASME J. Vibr. Acoust.
,
113
, pp.
516
522
.
128.
Young
,
G. E.
, and
Chang
,
R. J.
,
1987
, “
Prediction of the Response of Nonlinear Oscillators Under Stochastic Parametric and External Excitations
,”
Int. J. Non-Linear Mech.
,
22
, pp.
151
160
.
129.
Chang
,
R. J.
,
1992
, “
Non-Gaussian Linearization Method for Stochastic Parametrically and Externally Excited Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
114
, pp.
20
26
.
130.
Sobiechowski, C., and Sperling, L., 1996, “An Iterative Statistical Linearization Technique for MDOF Systems,” EUROMECH-2nd European Nonlinear Oscillation Conference, L. Pust and F. Peterka, eds., Prague, September 9–13, pp. 419–422.
131.
Sperling
,
L.
,
1986
, “
Approximate Analysis of Nonlinear Stochastic Differential Equations Using Certain Generalized Quasi-Moment Functions
,”
Acta Mech.
,
59
, pp.
183
200
.
132.
Falsone, G., 1991, “Stochastic Linearization for the Response of MDOF Systems Subjected to External and Parametric Gaussian Excitations,” Computational Stochastic Mechanics, P. D. Spanos and C. A. Brebbia, eds., Computational Mechanics Publication and Elsevier Applied Science, London, pp. 303–314.
133.
Falsone
,
G.
,
1992
, “
Stochastic Linearization for the Response of MDOF Systems Under Parametric Gaussian Excitations
,”
Int. J. Non-Linear Mech.
,
27
, pp.
1025
1037
.
134.
Soize
,
C.
,
1995
, “
Stochastic Linearization Method With Random Parameters for SDOF Nonlinear Dynamical Systems: Prediction and Identification Procedures
,”
Probab. Eng. Mech.
,
10
, pp.
143
152
.
135.
Soize
,
C.
, and
Le Fur
,
O.
,
1997
, “
Modal Identification of Weakly Nonlinear Multidimensional Dynamical Systems Using Stochastic Linearization Method With Random Coefficients
,”
Mech. Syst. Signal Process.
,
11
, pp.
37
49
.
136.
Naprstek
,
J.
, and
Fischer
,
O.
,
1997
, “
Spectral Properties of a Nonlinear Self-Excited System With Random Perturbations of the Parameters
,”
Z. Angew. Math. Mech.
,
77, S1
, pp.
241
242
.
137.
Tylikowski
,
A.
, and
Marowski
,
W.
,
1986
, “
Vibration of a Nonlinear Single Degree of Freedom System Due to Poissonian Impulse Excitation
,”
Int. J. Non-Linear Mech.
,
21
, pp.
229
238
.
138.
Grigoriu, M., 1995, Applied Non-Gaussian Processes: Examples, Theory, Simulation, Linear Random Vibration, and MATLAB Solutions, Prentice-Hall, Englewood Cliffs, NJ.
139.
Grigoriu
,
M.
,
1995
, “
Linear and Nonlinear Systems With Non-Gaussian White Noise Input
,”
Probab. Eng. Mech.
,
10
, pp.
171
180
.
140.
Grigoriu
,
M.
,
1995
, “
Equivalent Linearization for Poisson White Noise Input
,”
Probab. Eng. Mech.
,
10
, pp.
45
51
.
141.
Grigoriu
,
M.
,
2000
, “
Equivalent Linearization for Systems Driven by Levy White Noise
,”
Probab. Eng. Mech.
,
15
, pp.
185
190
.
142.
Sobiechowski, C., and Socha, L., 1998, “Statistical Linearization of the Duffing Oscillator Under Non-Gaussian External Excitation,” Proc. of Int. Conference on Computational Stochastic Mechanics, P. D. Spanos, ed., Balkema, Rotterdam, pp. 125–133.
143.
Sobiechowski
,
C.
, and
Socha
,
L.
,
2000
, “
Statistical Linearization of the Duffing Oscillator Under Non-Gaussian External Excitation
,”
J. Sound Vib.
,
231
, pp.
19
35
.
144.
Atalik
,
T. S.
, and
Utku
,
S.
,
1976
, “
Stochastic Linearization of Multi-Degree-of-Freedom Nonlinear Systems
,”
Earthquake Eng. Struct. Dyn.
,
4
, pp.
411
420
.
145.
Grigoriu
,
M.
, and
Ariaratnam
,
S.
,
1988
, “
Response of Linear Systems to Polynomials of Gaussian Process
,”
ASME J. Appl. Mech.
,
55
, pp.
905
910
.
146.
Krenk, S., and Gluver, H., 1988, “An Algorithm for Moments of Response From Non-Normal Excitation of Linear Systems,” Stochastic Structural Dynamics, S. T. Ariaratnam, G. I. Schueller and I. Elishakoff, eds., Elsevier, London, pp. 181–195.
147.
Muscolino
,
G.
,
1995
, “
Linear Systems Excited by Polynomial Forms of Non-Gaussian Filtered Process
,”
Probab. Eng. Mech.
,
10
, pp.
35
44
.
148.
Iyengar
,
R. N.
, and
Jaiswal
,
O. R.
,
1993
, “
A New Model for non-Gaussian Random Excitations
,”
Probab. Eng. Mech.
,
8
, pp.
281
287
.
149.
Proppe
,
C.
,
2002
, “
Equivalent Linearization of MDOF Systems Under External Poisson White Noise Excitation
,”
Probab. Eng. Mech.
,
17
, pp.
393
399
.
150.
Proppe
,
C.
,
2003
, “
Stochastic Linearization of Dynamical Systems Under Parametric Poisson White Noise Excitation
,”
Int. J. Non-Linear Mech.
,
38
, pp.
543
555
.
151.
Hou, Z., Noori, M. N., Wang, Y., and Duval, L., 1999, “Dynamic Behavior of Duffing Oscillators Under a Disordered Periodic Excitation,” Stochastic Structural Dynamics, B. F. Spencer and E. A. Johnson, eds., Balkema, Rotterdam, pp. 93–98.
152.
Sobiechowski
,
C.
,
1999
, “
Statistical Linearization of Dynamical Systems Under Parametric Delta-Correlated Excitation
,”
Z. Angew. Math. Mech.
,
79, S2
, pp.
315
316
.
153.
Falsone, G., and Pirrotta, A., 1995, “A New Stochastic Linearization Approach,” Computational Stochastic Mechanics, P. D. Spanos, ed., A. A. Balkema, Rotterdam, pp. 105–112.
154.
Di Paola
,
M.
, and
Falsone
,
G.
,
1993
, “
Stochastic Dynamics of Nonlinear Systems Driven by Non-Normal Delta-Correlated Processes
,”
ASME J. Appl. Mech.
,
60
, pp.
141
148
.
155.
Iwan
,
W. D.
, and
Krousgrill
,
R. G.
,
1983
, “
Equivalent Linearization for Continuous Dynamical Systems
,”
ASME J. Appl. Mech.
,
50
, pp.
415
420
.
156.
Iwan
,
W. D.
, and
Whirley
,
R. G.
,
1993
, “
Nonstationary Equivalent Linearization of Nonlinear Continuous Systems
,”
Probab. Eng. Mech.
,
8
, pp.
273
280
.
157.
Sireteanu, T., 1996, “Effect of System Nonlinearities Obtained by Statistical Linearization Methods,” EUROMECH-2nd European Nonlinear Oscillation Conference, L. Pust and F. Peterda, eds., Prague, pp. 415–417.
158.
Lin
,
V. H. L.
, and
Cheng
,
V. H. L.
,
1991
, “
Statistical Linearization for Multi-Input/Multi-Output Nonlinearities
,”
J. Guid. Control
,
14
, pp.
1315
1318
.
159.
Vasta
,
M.
, and
Schueller
,
G. I.
,
2000
, “
Phase Space Reduction in Stochastic Dynamics
,”
J. Eng. Mech.
,
126
, pp.
626
632
.
160.
Smyth
,
A. W.
, and
Masri
,
S. F.
,
2002
, “
Nonstationary Response of Nonlinear Systems Using Equivalent Linearization With a Compact Analytical Form of the Excitation Process
,”
Probab. Eng. Mech.
,
17
, pp.
97
108
.
161.
Ohtori
,
T.
, and
Spencer
,
B. F.
,
2002
, “
Semi-Implicit Integration Algorithm for Stochastic Analysis of Multi-Degree-of-Freedom Structures
,”
J. Eng. Mech.
,
128
, pp.
635
643
.
162.
Chernyshev
,
K. R.
,
2002
, “
Using Informational Measures of Dependence in Statistical Linearization
,”
Autom. Remote Control (Engl. Transl.)
,
63
, pp.
1439
1447
.
163.
Grigoriu
,
M.
,
1991
, “
Statistically Equivalent Solutions of Stochastic Mechanics Problems
,”
J. Eng. Mech.
,
117
, pp.
1906
1918
.
164.
Socha
,
L.
,
1999
, “
Poli-Criterial Equivalent Linearization Technique
,”
Z. Angew. Math. Mech.
,
78
(
SII
), pp.
317
318
.
165.
Silva
,
F. L.
, and
Ruiz
,
S. E.
,
2000
, “
Calibration of the Equivalent Linearization Gaussian Approach Applied to Simple for Hysteretic Systems Subjected to Narrow Band Seismic Motions
,”
Struct. Safety
,
22
, pp.
211
231
.
166.
Foliente
,
G. C.
,
Singh
,
M. P.
, and
Noori
,
M. N.
,
1996
, “
Equivalent Linearization of Generally Pinching Hysteretic, Degrading Systems
,”
Earthquake Eng. Struct. Dyn.
,
25
, pp.
611
629
.
167.
Dobson
,
S.
,
Noori
,
M.
,
Hou
,
Z.
, and
Dimentberg
,
M.
,
1998
, “
Direct Implementation of Stochastic Linearization for SDOF Systems with General Hysteresis
,”
Struct. Engrg. Mech.
,
6
, pp.
473
484
.
168.
Yan
,
X.
, and
Nie
,
J.
,
2000
, “
Response of SMA Superelastic Systems Under Random Excitation
,”
J. Sound Vib.
,
238
, pp.
893
901
.
169.
Kimura
,
K.
,
Yasumuro
,
H.
, and
Sakata
,
M.
,
1994
, “
Non-Gaussian Equivalent Linearization for Non-Stationary Random Vibration of Hysteretic Systems
,”
Probab. Eng. Mech.
,
9
, pp.
15
22
.
170.
Takewaki
,
I.
,
2002
, “
Critical Excitation for Elastic-Plastic Structures Via Statistical Equivalent Linearization
,”
Probab. Eng. Mech.
,
17
, pp.
73
84
.
171.
Hurtado
,
J. E.
, and
Barbat
,
A. H.
,
1996
, “
Improved Stochastic Linearization Method Using Mixed Distributions
,”
Struct. Safety
,
18
, pp.
49
62
.
172.
Hurtado
,
J. E.
, and
Barbat
,
A. H.
,
2000
, “
Equivalent Linearization of the Bouc-Wen Hysteretic Model
,”
Eng. Struct.
,
22
, pp.
1121
1132
.
173.
Spanos
,
P. D.
, and
Tsavachidis
,
S.
,
2001
, “
Deterministic and Stochastic Analyses of Nonlinear System With a Biot Visco-Elastic Elements
,”
Earthquake Eng. Struct. Dyn.
,
30
, pp.
595
612
.
174.
Ni
,
Y. Q.
,
Ying
,
Z. G.
, and
Zhu
W. Q.
,
2002
, “
Random Response of Integrable Duhem Hysteretic Systems Under Non-White Excitation
,”
Int. J. Non-Linear Mech.
,
37
, pp.
1407
1419
.
175.
Bouc
,
R.
, and
Boussaa
,
D.
,
2002
, “
Drifting Response of Hysteretic Oscillators to Stochastic Excitation
,”
Int. J. Non-Linear Mech.
,
37
, pp.
1397
1406
.
176.
Ying
,
Z. G.
,
2003
, “
Response Analysis of Randomly Excited Nonlinear Systems With Symmetric Weighting Preisach Hysteresis
,”
Acta Mech. Sin.
,
19
, pp.
365
370
.
177.
Pradlwarter
,
H. J.
, and
Li
,
W.
,
1991
, “
On the Computations of the Stochastic Response of Highly Nonlinear Large MDOF-Systems Modeled by Finite Elements
,”
Probab. Eng. Mech.
,
6
, pp.
109
116
.
178.
Locke
,
J. E.
,
1994
, “
Finite-Element Nonlinear Random Response of Beams
,”
J. Sound Vib.
,
178
, pp.
201
210
.
179.
Muravyov
,
A. A.
, and
Rizzi
,
S. A.
,
2003
, “
Determination of Nonlinear Stiffness With Application to Random Vibration of Geometrically Nonlinear Structures
,”
Comput. Struct.
,
15
, pp.
1513
1523
.
180.
Chen
,
R. P.
,
Mei
,
C.
, and
Wolfe
,
H. F.
,
1996
, “
Comparison of Finite Element Nonlinear Beam Random Response With Experimental Results
,”
J. Sound Vib.
,
195
, pp.
719
737
.
181.
Cheng
,
G. F.
,
Lee
,
Y. Y.
, and
Mei
,
C.
,
2003
, “
Nonlinear Random Response of Internally Hinged Beams
,”
Finite Elem. Anal. Design
,
39
, pp.
487
504
.
182.
Schueller
,
G. I.
, and
Pradlwarter
,
H. J.
,
1999
, “
On the Stochastic Response of Nonlinear FE Models
,”
Arch. Appl. Mech.
,
69
, pp.
765
784
.
183.
Emam, H. H., Pradlwarter, H. J., and Schueller, G. I., 1999, “On the Computational Implementation of EQL in FE-Analysis,” Stochastic Structural Dynamics, B. F. Spencer and E. A. Johnson, eds., Balkema, Rotterdam, pp. 85–91.
184.
Emam
,
H. H.
,
Pradlwarter
,
H. J.
, and
Schueller
,
G. I.
,
2000
, “
A Computational Procedure for Implementation of Equivalent Linearization in Finite Element Analysis
,”
Earthquake Eng. Struct. Dyn.
,
29
, pp.
1
17
.
185.
Pradlwarter
,
H. J.
,
Schueller
,
G. I.
, and
Schenk
,
C. A.
,
2003
, “
A Computational Procedure to Estimate the Stochastic Dynamic Response of Large Nonlinear FE-Models
,”
Comput. Methods Appl. Mech. Eng.
,
192
, pp.
777
801
.
186.
Pradlwarter
,
H. J.
,
2002
, “
Deterministic Integration Algorithms for Stochastic Response Computations of FE Systems
,”
Comput. Struct.
,
80
, pp.
1489
1502
.
187.
To
,
C. W. S.
,
1986
, “
The Stochastic Central Difference Method in Structural Dynamics
,”
Comput. Struct.
,
23
, pp.
813
818
.
188.
To
,
C. W. S.
,
1988
, “
Recursive Expression for Random Response of Nonlinear Systems
,”
Comput. Struct.
,
29
, pp.
451
457
.
189.
To
,
C. W. S.
, and
Liu
,
M. L.
,
1993
, “
Recursive Expression for Time Dependent Means and Mean Square Responses of a Multi-Degree-of-Freedom Nonlinear Systems
,”
Comput. Struct.
,
48
, pp.
993
1000
.
190.
Wonham
,
W. M.
, and
Cashman
,
W. F.
,
1969
, “
A Computational Approach to Optimal Control of Stochastic Saturating Systems
,”
Int. J. Control
,
10
, pp.
77
98
.
191.
Kwakernaak, H., and Sivan, R., 1972, Linear Optimal Control Systems, Wiley, New York.
192.
Beaman
,
J. J.
,
1984
, “
Nonlinear Quadratic Gaussian Control
,”
Int. J. Control
,
39
, pp.
343
361
.
193.
Kazakov
,
I. E.
,
1984
, “
Analytical Synthesis of a Quasi-Optimal Additive Control in a Nonlinear Stochastic System
,”
Avtom. Telemekh.
,
45
, pp.
34
46
.
194.
Yoshida
,
K.
,
1984
, “
A Method of Optimal Control of Nonlinear Stochastic Systems With Non-Quadratic Criteria
,”
Int. J. Control
,
39
, pp.
279
291
.
195.
Gokcek
,
C.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2000
, “
Disturbance Rejection in Control Systems With Saturating Actuators
,”
Nonlinear Analysis
,
40
, pp.
213
226
.
196.
Gokcek
,
C.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2000
, “
Optimization of Disturbance Rejection in Systems With Saturating Actuators
,”
J. Math. Anal. Appl.
,
249
, pp.
135
159
.
197.
Gokcek
,
C.
,
Kabamba
,
P. T.
, and
Meerkov
,
S. M.
,
2001
, “
An LQR/LQG Theory for Systems With Saturating Actuators
,”
IEEE Trans. Autom. Control
,
46
, pp.
1529
1542
.
198.
Han
,
S. I.
, and
Kim
,
J. S.
,
2003
, “
Nonlinear Quadratic Gaussian Control With Loop Transfer Recovery
,”
Mechatronics
,
13
, pp.
273
293
.
199.
Kazakov
,
I. E.
,
1994
, “
Gaussian Approximation When Optimizing a Control in a Stochastic Nonlinear System
,”
J. Comp. Systems Sci. Int.
,
32
, pp.
118
122
.
200.
Kazakov
,
I. E.
,
1995
, “
Optimization of Control in a Nonlinear Stochastic System by a Local Criterion
,”
J. Comp. Systems Sci. Int.
,
35
, pp.
940
947
.
201.
Kazakov
,
I. E.
, and
Proppe
,
C.
, “
Analytical Construction of a Conditionally Optimal Control in a Nonlinear Stochastic System by a Complex Local Functional
,”
Avtom. Telemekh.
,
56
, pp.
34
46
.
202.
Yang
,
J. N.
,
Li
,
Z.
, and
Vongchavalitkul
,
S.
,
1994
, “
Stochastic Hybrid Control of Hysteretic Structures
,”
Probab. Eng. Mech.
,
9
, pp.
125
133
.
203.
Suzuki
,
Y.
,
1995
, “
Stochastic Control of Hysteretic Structural Systems
,”
Sadhana: Proc., Indian Acad. Sci.
,
20
, pp.
475
488
.
204.
Raju
,
G. V.
, and
Narayanan
,
S.
,
1995
, “
Active Control of Nonstationary Response of a 2-Degree of Freedom Vehicle Model With Nonlinear Suspension
,”
Sadhana: Proc., Indian Acad. Sci.
,
20
, pp.
489
499
.
205.
Narayanan
,
S.
, and
Senthil
,
S.
,
1998
, “
Stochastic Optimal Active Control of a 2-DOF Quarter Car Model With Nonlinear Passive Suspension Elements
,”
J. Sound Vib.
,
211
, pp.
495
506
.
206.
Socha
,
L.
,
2000
, “
Application of Statistical Linearization Techniques to Design of Quasi-Optimal Active Control of Nonlinear Systems
,”
J. Theor. Appl. Mech.
,
38
, pp.
591
605
.
207.
Socha
,
L.
, and
Proppe
,
C.
,
2002
, “
Control of the Duffing Oscillator Under Non-Gaussian External Excitation
,”
Eur. J. Mech. A/Solids
,
6
, pp.
1069
1082
.
208.
Koliopulos
,
P. K.
, and
Langley
,
R. S.
,
1993
, “
Improved Stability Analysis of the Response of a Duffing Oscillator Under Filtered White Noise
,”
Int. J. Non-Linear Mech.
,
28
, pp.
145
155
.
209.
Socha
,
L.
, and
Soong
,
T. T.
,
1992
, “
Sensitivity and Linearization Techniques in Analysis of Nonlinear Stochastic Systems
,”
J. Sound Vib.
,
156
, pp.
79
97
.
210.
Proppe, C., and Schueller, G. I., 2000, “Equivalent Linearization Revisited,” Proc. of Int. Conference on Advances in Structural Dynamics, J. M. Ko and Y. L. Xu, eds., Hong Kong, Dec. 13–15, Elsevier, New York, pp. 1207–1214.
211.
Socha, L., and Zasucha, G., 1991, “The Sensitivity Analysis of Stochastic Hysteretic Dynamic Systems,” Computational Stochastic Mechanics, P. D. Spanos and C. A. Brebbia, eds., Computational Mechanics Publication and Elsevier Applied Science, London, pp. 71–79.
212.
Huang
,
C. D.
, and
Soong
,
T. T.
,
1994
, “
Stochastic Sensitivity Analysis of Nonlinear Primary-Secondary Structural Systems
,”
Eng. Struct.
,
16
, pp.
91
96
.
213.
Park
,
Y. J.
,
1994
, “
Equivalent Linearization for Seismic Responses. I: Formulation and Error Analysis
,”
J. Eng. Mech.
,
118
, pp.
2207
2226
.
214.
Micaletti
,
R. C.
,
Cakmak
,
A. S.
,
Nielsen
,
S. R. K.
, and
Koyluoglu
,
H. U.
,
1998
, “
Error Analysis of Statistical Linearization With Gaussian Closure for Large-Degree-of-Freedom Systems
,”
Probab. Eng. Mech.
,
13
, pp.
77
84
.
215.
Skrzypczyk
,
J.
,
1994
, “
Accuracy Analysis of Statistical Linearization Methods Applied to Nonlinear Continuous Systems Described by Random Integral Equations
,”
J. Theor. Appl. Mech.
,
32
, pp.
841
865
.
216.
Skrzypczyk
,
J.
,
1995
, “
Accuracy Analysis of Statistical Linearization Methods Applied to Nonlinear Dynamical Systems
,”
Rep. Math. Phys.
,
36
, pp.
1
20
.
217.
Casciati
,
F.
, and
Venini
P.
,
1994
, “
Equivalent Linearization for Seismic Responses, I: Formulation and Error Analysis-Discussion
,”
J. Eng. Mech.
,
120
, pp.
676
678
.
You do not currently have access to this content.