Abstract

In this paper, we present direct comparisons of experimental results on transition in wall-bounded flows obtained by flow visualizations, hot-film measurement, and particle-image velocimetry, along with a brief mention of relevant theoretical progresses, based on a critical review of about 120 selected publications. Despite somewhat different initial disturbance conditions used in experiments, the flow structures were found to be practically the same. The following observed flow structures are considered to be of fundamental importance in understanding transitional wall-bounded flows: the three-dimensional nonlinear wave packets called solitonlike coherent structures (SCSs) in boundary layer and pipe flows, the Λ-vortex, the secondary vortex loops, and the chain of ring vortices. The dynamic processes of the formation of these structures and transition as newly discovered by recent experiments include the following: (1) The sequential interaction processes between the Λ-vortex and the secondary vortex loops, which control the manner by which the chain of ring vortices is periodically introduced from the wall region into the outer region of the boundary layer. (2) The generation of high-frequency vortices, which is one of the key issues for understanding both transitional and developed turbulent boundary layers (as well as other flows), of which several explanations have been proposed but a particularly clear interpretation can be provided by the experimental discovery of secondary vortex loops. The ignorance of secondary vortex loops would make the dynamic processes and flow structures in a transitional boundary layer inconsistent with previous discoveries. (3) The dominant role of SCSs in all turbulent bursting, which is considered as the key mechanism of turbulent production in a low Reynolds-number turbulent boundary layer. Of direct relevance to bursting is the low-speed streaks, whose formation mechanism and link to the flow structures in wall-bounded flows can be answered more clearly than before in terms of the SCS dynamics. The observed SCSs and secondary vortex loops not only enable revisiting the classic story of wall-bounded flow transition, but also open a new avenue to reconstruct the possible universal scenario for wall-bounded flow transition.

References

1.
Reynolds
,
O.
, 1883, “
An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall be Direct or Sinuous, and the Law of Resistance in Parallel Channels
,”
Philos. Trans. R. Soc. London
0962-8428,
174
, pp.
935
982
.
2.
Schubauer
,
G. B.
, and
Klebanoff
,
P. S.
, 1956, “
Contributions on the Mechanics of Boundary Layer Transition
,” NACA Report No. 1289.
3.
Klebanoff
,
P. S.
,
Tidstrom
,
K. D.
, and
Sargent
,
L. M.
, 1962, “
The Three-Dimensional Nature of Boundary-Layer Instability
,”
J. Fluid Mech.
0022-1120,
12
, pp.
1
34
.
4.
Emmons
,
H. W.
, 1951, “
The Laminar-Turbulent Transition in Boundary Layers
,”
J. Aeronaut. Sci.
0095-9812,
18
, pp.
490
498
.
5.
Hama
,
F. R.
,
Long
,
J. D.
, and
Hegarty
,
J. C.
, 1957, “
On Transition to Laminar to Turbulent Flow
,”
J. Appl. Phys.
0021-8979, pp.
388
394
. ,
28
6.
Kovasznay
,
L. S.
,
Komoda
,
H.
, and
Vasudeva
,
B. R. D.
, 1962, “
Detailed Flow Field in Transition
,”
Proceedings of Heat Transfer and Fluid Mechanics Institute
,
Stanford University Press
,
Palo Alto
, pp.
1
26
.
7.
Hama
,
F. R.
, and
Nautant
,
J.
, 1963, “
Detailed Flow-Field Observations in the Transitional Process in a Thick Boundary Layer
,”
Proceedings of Heat Transfer and Fluid Mechanics Institute
,
Stanford University Press
,
Palo Alto
, pp.
77
93
.
8.
Morkovin
,
M. V.
, 1969, “
Critical Evaluation of Transition From Laminar to Turbulent Shear Layer With Emphasis on Hypersonically Traveling Bodies
,” AFFDL-TR-68-49.
9.
Loehrke
,
R. I.
, and
Morkovin
,
M. B.
, 1975, “
Transition in Nonreversing Oscillating Boundary Layer
,”
ASME Trans. J. Fluids Eng.
0098-2202,
97
, pp.
534
549
.
10.
Kachanov
,
Y. S.
,
Koznov
,
V. V.
, and
Levchenko
,
V. Y.
, 1974, “
Experimental Investigation of the Influence of Cooling on the Stability of Laminar Boundary Layer
,”
Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk
,
13
, pp.
2
6
.
11.
Kachanov
,
Y. S.
,
Koznov
,
V. V.
, and
Levhcenko
,
V. Y.
, 1974, “
Experimental Study of Laminar-Boundary-Layer Stability on a Wavy Surface
,”
Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk
,
13
, pp.
18
26
.
12.
Sapiro
,
P. J.
, 1977, MIT Acoustic and Vibration Laboratory Report No. 83458-83560-1.
13.
Reed
,
H. L.
, and
Saric
,
W. S.
, 2002, “
Stability of Three Dimensional Boundary Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
291
329
.
14.
Rogler
,
H. L.
, 1977, “
The Coupling Between Free-Stream Disturbances Driver Oscillations, Forced Oscillations and Stability Waves in a Spatial Analysis of a Boundary Layer
,” AGARD-CP-244, Paper No. 14.
15.
Rogler
,
H. L.
, and
Reshotko
,
E.
, 1975, “
Disturbances in a Boundary Layer Introduced by a Low Intensity Array of Vortices
,”
SIAM J. Appl. Math.
0036-1399,
28
, pp.
431
462
.
16.
Mangur
,
C. J.
, 1977, “
On the Sensitivity of Shear Layers to Sound
,” AIAA Paper No. 77-1369.
17.
Wu
,
X.
, 1999, “
Generation of Tollmien–Schlichting Waves by Convecting Gusts Interacting With Sound
,”
J. Fluid Mech.
0022-1120,
397
, pp.
285
316
.
18.
Gaster
,
M.
, and
Grant
,
T.
, 1975, “
An Experimental Investigation of the Formation and Development of a Wave Packet in a Laminar Boundary Layer
,”
Proc. R. Soc. London, Ser. A
1364-5021,
347
, pp.
253
269
.
19.
Borodulin
,
V. I.
,
Goponenko
,
V. R.
,
Kachanov
,
Y. S.
,
Meyer
,
D. G. W.
,
Rist
,
U.
,
Lian
,
Q. X.
, and
Lee
,
C. B.
, 2002, “
Late-Stage Transitional Boundary-Layer Structures. Direct Numerical Simulation and Experiment
,”
Theor. Comput. Fluid Dyn.
0935-4964,
15
, pp.
317
337
.
20.
Kachnaov
,
Y. S.
, 1994, “
Physical Mechanisms of Laminar-Boundary-Layer Transition
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
411
482
.
21.
Bake
,
S.
,
Meyer
,
D. G. W.
, and
Rist
,
U.
, 2002, “
Turbulence Mechanism in Klebanoff Transition: A Quantitative Comparison of Experiment and Direct Numerical Simulation
,”
J. Fluid Mech.
0022-1120,
459
, pp.
217
243
.
22.
Stuart
,
J. T.
, 1958, “
On the Nonlinear Mechanics of Hydrodynamic Instability
,”
J. Fluid Mech.
0022-1120,
4
, pp.
1
21
.
23.
Craik
,
A. D. D.
, 1971, “
Nonlinear Resonant Instability in Boundary Layer
,”
J. Fluid Mech.
0022-1120,
50
, pp.
393
413
.
24.
Corke
,
T. C.
, and
Mangano
,
R. A.
, 1989, “
Resonant Growth of Three-Dimensional Modes in Transitioning Blasius Boundary Layers
,”
J. Fluid Mech.
0022-1120,
209
, pp.
93
150
.
25.
Mankbadi
,
R. R.
,
Wu
,
X.
, and
Lee
,
S. S.
, 1993, “
A Critical-Layer Analysis of Resonant Triad in Blasius Boundary Layer Transition: Nonlinear Interactions
,”
J. Fluid Mech.
0022-1120,
256
, pp.
85
106
.
26.
Lee
,
C. B.
, and
Fu
,
S.
, 2001, “
On the Formation of the Chain of Ring-Like Vortices in a Transitional Boundary Layer
,”
Exp. Fluids
0723-4864,
30
(
3
), pp.
354
357
.
27.
Lee
,
C. B.
, 2001,
Proceedings of Heat Transfer and Fluid Mechanics Institute
,
California State University Press
,
Sacramento
, pp.
61
80
.
28.
Lee
,
C. B.
, 1998, “
New Features of CS Solitons and the Formation of Vortices
,”
Phys. Lett. A
0375-9601,
247
, pp.
397
402
.
29.
Lee
,
C. B.
, 2000, “
Possible Universal Transitional Scenario in a Flat Plate Boundary Layer: Measurement and Visualization
,”
Phys. Rev. E
1063-651X,
62
, pp.
3659
3671
;
Lee
,
C. B.
, and
Li
,
R. Q.
, 2007, “
A Dominate Flow Structure in a Transitional Boundary Layer
,”
J. Turbul.
1468-5248,
8
, N55, pp.
1
37
.
30.
Lee
,
C. B.
, and
Chen
,
S. Y.
, 2005,
Transition and Turbulence Control
,
M.
Gad-el-Hak
and
H.
Mann Tsai
, eds.,
World Scientific
,
Singapore
, pp.
38
85
.
31.
Bjorn
,
H.
,
van Doorne
,
C. W. H.
,
Jerry
,
W.
,
Nieuwstadt
,
F. T. M.
,
Holger
,
F.
,
Bruno
,
E.
,
Hakan
,
W.
,
Richard
,
R. K.
, and
Fabian
,
W.
, 2004, “
Experimental Observation of Nonlinear Traveling Waves in Turbulent Pipe Flow
,”
Science
0036-8075,
305
, pp.
1594
1598
.
32.
Morkovin
,
M. V.
, 1968, “
Critical Evaluation of Transition From Laminar to Turbulent Shear Layer With Emphasis of Hypersonically Traveling Bodies
,” AFFDL Technical Report No. 68-149.
33.
Reshotko
,
E.
, 1976, “
Boundary-Layer Stability and Transition
,”
Annu. Rev. Fluid Mech.
0066-4189,
8
, pp.
311
349
.
34.
Mack
,
L. M.
, 1984, “
Boundary-Layer Linear Stability Theory
,” AGARD Reporpt No. 709.
35.
Kendall
,
J. M.
, 1984, “
Experiments on the Generation of Tollmien–Schlichting Waves in a Flat Plate Boundary Layer by Weak Freestream Turbulence
,” AIAA Paper No. 84-0011.
36.
Kendall
,
J. M.
, 1998, “
Experiments on Boundary Layer Receptivity to Freestream Turbulence
,” AIAA Paper No. 98-0530.
37.
Kosorygin
,
V. S.
, 2000, “
Experiments on Receptivity, Stability, and Transition of Two Dimensional Laminar Boundary Layers with Streamwise Pressure Gradients
,”
Laminar-Turbulent Transition
,
H.
Fasel
and
W.
Saric
, eds.,
Springer
,
Sedona
, pp.
97
102
.
38.
Goldstein
,
M. E.
, and
Hultgren
,
L. S.
, 1989, “
Boundary Layer Receptivity to Long-Wave Disturbances
,”
Annu. Rev. Fluid Mech.
0066-4189,
21
, pp.
137
166
.
39.
Kerschen
,
E. J.
, 1989, “
Boundary-Layer Receptivity
,” AIAA Paper No. 89-1109.
40.
Reshotko
,
E.
, 1994, “
Boundary-Layer Instability, Transition, and Control
,” AIAA Paper 94-0001.
41.
Choudhari
,
M.
, and
Streett
,
C.
, 1994, “
Theoretical Predictions of Boundary-Layer Receptivity
,” AIAA Paper No. 94-2223.
42.
Crouch
,
J. D.
, and
Spalart
,
P. R.
, 1995, “
A Study of Nonparallel and Nonlinear Effects on the Localized Receptivity of Boundary Layers
,”
J. Fluid Mech.
0022-1120,
290
, pp.
29
37
.
43.
Wlezien
,
R. W.
,
Parekh
,
D. E.
, and
Island
,
T. C.
, 1990, “
Measurement of Acoustic Receptivity at Leading Edges and Porous Strips
,”
Appl. Mech. Rev.
0003-6900,
43
, pp.
167
174
.
44.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
, 2001, “
Disturbance Growth in Boundary Layers Subjected to Freestream Turbulence
,”
J. Fluid Mech.
0022-1120,
430
, pp.
149
168
.
45.
Theodorsen
,
T.
, 1952,
Proceedings of the 2nd Midwestern Conference on Fluid Mechanics
,
Ohio State University
,
Columbus, OH
.
46.
Willmarth
,
W. W.
, 1975, “
Structure of Turbulence in Boundary Layers
,”
Adv. Appl. Mech.
0065-2156,
15
, pp.
159
254
.
47.
Willmarth
,
W. W.
, and
Lu
,
S. S.
, 1972, “
Structure of the Reynolds Stress Near the Wall
,”
J. Fluid Mech.
0022-1120,
55
, pp.
65
92
.
48.
Moin
,
P.
,
Leonard
,
A.
, and
Kim
,
J.
, 1986, “
Evolution of a Curved Vortex-Lament Into a Vortex Ring
,”
Phys. Fluids
0031-9171,
29
, pp.
955
963
.
49.
Singer
,
B. A.
, 1996, “
Characteristics of a Young Turbulent Spot
,”
Phys. Fluids
1070-6631,
8
, pp.
509
521
.
50.
Gad-el-Hak
,
M.
, and
Hussain
,
F.
, 1986, “
Coherent Structures in a Turbulent Boundary Layer. Part 1: Generation of “Artificial” Bursts
,”
Phys. Fluids
0031-9171,
29
, pp.
2124
2139
51.
Smith
,
C. R.
, and
Wakler
,
J. D. A.
, 1995, “
Turbulent Wall-Layer Vortices
,”
Fluid Vortices
,
Kluwer Academic Publishers
,
Dordrecht
, pp.
235
316
.
52.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, 2000, “
Vortex Organization in the Outer Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
422
, pp.
1
53
.
53.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
, 1999, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
0022-1120,
387
, pp.
353
396
.
54.
Cantwell
,
B.
,
Coles
,
D.
, and
Dimotakis
,
P.
, 1978, “
Structure and Entrainment in Plane of Symmetry of a Turbulent Spot
,”
J. Fluid Mech.
0022-1120,
87
, pp.
641
672
.
55.
Landahl
,
M. T.
, 1977, “
Coherent Regions in the Outer Region of a Turbulent Boundary Layer
,”
Phys. Fluids
0031-9171,
20
, pp.
55
63
.
56.
Hinze
,
J. O.
, 1975, “
Turbulence
,”
McGraw-Hill
.
57.
Grek
,
H. R.
,
Kozlov
,
V. V.
, and
Ramazanov
,
M. P.
, 1990, “
Receptivity and Stability of the Boundary Layer at a High Turbulence Level
,”
Laminar-Turbulent Transition
,
H.
Fasel
and
W.
Saric
, eds.,
Springer
,
Toulouse
, pp.
511
521
.
58.
Corke
,
T. C.
, 1990, “
Effect of Controlled Resonant Interactions and Mode Detuning on Turbulent Transition in Boundary Layers
,”
Laminar-Turbulent Transition
,
H.
Fasel
and
W.
Saric
, eds.,
Springer
,
Toulouse
, pp.
151
178
.
59.
Zelman
,
M. B.
, and
Smorodsky
,
B. V.
, 1991, “
On the Influence of the Inflexion in Mean Velocity Profile on the Resonance Interaction of Disturbances in Boundary Layer
,”
Prikl. Mekh. Tekh. Fiz.
0044-4626,
2
, pp.
61
66
.
60.
Savenkov
,
I. V.
, 1993, “
Wave Pockets, Resonant Interaction and Solitons Formation in Inlet Pipe Flows
,”
J. Fluid Mech.
0022-1120,
252
, pp.
1
30
.
61.
Herbert
,
T.
, 1988, “
Secondary Instability of Boundary Layer
,”
Annu. Rev. Fluid Mech.
0066-4189,
20
, pp.
487
526
.
62.
Amini
,
J.
, and
Lespinard
,
G.
, 1982, “
Experimental Study of an “Incipient Spot” in a transitional boundary layer
,”
Phys. Fluids
0031-9171,
25
, pp.
1743
1750
.
63.
Cowley
,
S. J.
,
Van Dornrnelen
,
L. L.
, and
Lam
,
S. T.
, 1991, “
On the Use of Lagrangian Variables in Descriptions of Unsteady Boundary-Layer Separation
.”
Philos. Trans. R. Soc. London, Ser. A
0962-8428
333
, pp.
343
378
. ,
64.
Van Dommelen
,
L. L.
, and
Cowley
,
S. J.
, 1990, “
On the Lagrangian Description of Unsteady Boundary-Layer Separation. Part 2. General Theory
.”
J. Fluid Mech.
0022-1120,
210
, pp.
593
626
.
65.
Robinson
,
S. K.
, 1991, “
Coherent Motion in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
601
639
.
66.
Smith
,
C. R.
,
Walker
,
J. D. A.
,
Haidari
,
A. H.
, and
Sobrun
,
U.
, 1991, “
On the Dynamics of Near-Wall Turbulence
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
336
, pp.
131
175
.
67.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstaller
,
W. P.
, 1967, “
The Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
30
, pp.
741
773
.
68.
Hocking
,
L. M.
, and
Stewartson
,
K.
, 1971, “
On the Non-Linear Response of a Marginally Unstable Plane Parallel Flow to a Three-Dimensional Disturbance
,”
Mathematika
0025-5793,
18
, pp.
219
239
.
69.
Hocking
,
L. M.
, and
Stewartson
,
K.
, 1972, “
On the Nonlinear Response of a Marginally Unstable Plane Parallel Flow to a Two-Dimensional Disturbance
,”
Proc. R. Soc. London, Ser. A
1364-5021,
326
, pp.
289
313
.
70.
Haberman
,
R.
, 1973, “
Note on Slightly Unstable Nonlinear Wave Systems
,”
J. Fluid Mech.
0022-1120,
58
, pp.
129
142
.
71.
Haberman
,
R.
, 1979, “
Energy Bounds for the Slow Capture by a Center in Sustained Resonance
,”
SIAM J. Appl. Math.
0036-1399,
43
, pp.
244
256
.
72.
Hocking
,
L. M.
,
Stewartson
,
K.
, and
Stuart
,
J. T.
, 1972, “
A Nonlinear Instability Burst in Plane Parallel Flow
,”
J. Fluid Mech.
0022-1120,
51
, pp.
705
735
.
73.
Craik
,
A. D. D.
, 1985,
Wave Interaction and Fluid Flows
,
Cambridge University Press
,
Cambridge
.
74.
Falco
,
R. E.
, 1977, “
Coherent Motions in the Outer Region of Turbulent Boundary Layers
,”
Phys. Fluids
0031-9171 Suppl.,
20
, pp.
s124
132
.
75.
Head
,
M. R.
, and
Bandyopadhyay
,
P.
, 1981, “
New Aspects of Turbulent Boundary Layer Structure
,”
J. Fluid Mech.
0022-1120,
107
, pp.
297
338
.
76.
Smith
,
C. R.
, 1995,
Fluid Vortices by Green SI
,
Kluwer
,
Dordrecht
, pp.
235
290
.
77.
Falco
,
R. E.
, 1991, “
A Coherent Structure Model of the Turbulent Boundary Layer and Its Ability to Predict Reynolds Number Dependence
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
336
, pp.
103
129
.
78.
Chu
,
C. C.
, and
Falco
,
R. E.
, 1988, “
Vortex Ring/Viscous Wall Layer Interaction Model of the Turbulence Production Process Near Walls
,”
Exp. Fluids
0723-4864,
6
, pp.
305
315
.
79.
Cantwell
,
B. J.
, 1986, “
Viscous Starting Jets
,”
J. Fluid Mech.
0022-1120,
173
, pp.
159
189
.
80.
Crow
,
S. C.
, 1970, “
Stability Theory for a Pair of Trailing Vortices
,”
AIAA J.
0001-1452,
8
, pp.
2172
21279
.
81.
Clark
,
J. A.
, and
Markland
,
E.
, 1971, “
Flow Visualization in Turbulent Boundary Layers
,”
J. Hydr. Div.
0044-796X,
97
, pp.
1653
1664
.
82.
Smith
,
C. R.
, and
Schwartz
,
S. P.
, 1983, “
Observation of Streamwise Rotation in the Near Wall Region of a Turbulent Boundary Layer
,”
Phys. Fluids
0031-9171,
26
, pp.
641
652
.
83.
Kasagi
,
N.
, 1988,
Near Wall Turbulence: Zaric Memorial Conference
,
S. J.
Kline
and
N. H.
Afgan
, eds.,
Hemisphere
,
New York
.
84.
Brown
,
G. L.
, and
Thomas
,
A. S. W.
, 1977, “
Large Structure in a Turbulent Boundary Layer
,”
Phys. Fluids
0031-9171,
20
, pp.
S243
252
.
85.
Phillips
,
W. R. C.
,
Wu
,
Z.
, and
Lumley
,
J. L.
, 1996, “
On the Formation of Longitudinal Vortices in a Turbulent Boundary Layer Over Wavy Terrain
,”
J. Fluid Mech.
0022-1120,
326
, pp.
321
341
.
86.
Nishioka
,
M.
,
Asai
,
M.
, and
Iida
,
S.
, 1989,
Proceedings of International Union of Theoretical and Applied Mechanics on Laminar-Turbulent Transition
,
Springer
,
New York
.
87.
Nishioka
,
M.
, and
Asai
,
M.
, 1984, “
Evolution of Tollmien-Schlichting Waves into Wall Turbulence
,”
Turbulence and Chaotic Phenomena in Fluids
,
T.
Tatsumi
, ed.,
North-Holland
,
Amsterdam
, pp.
87
92
.
88.
Sandham
,
N. D.
, and
Kleiser
,
L.
, 1992, “
The Late Stages of Transition to Turbulence in Channel Flow
,”
J. Fluid Mech.
0022-1120,
245
, pp.
319
348
.
89.
Mochizuki
,
M.
, 1961, “
Smoke Observation on Boundary Layer Transition Caused by a Spherical Roughness Element
,”
J. Phys. Soc. Jpn.
0031-9015,
16
, pp.
995
1008
.
90.
Asai
,
M.
,
Sawada
,
K.
, and
Nishioka
,
M.
, 1996, “
Development of Turbulent Patch in a Subcritical Boundary-Layer Transition
,”
Fluid Dyn. Res.
0169-5983,
18
, pp.
165
182
.
91.
Doligalski
,
T. L.
,
Smith
,
C. R.
, and
Walker
,
J. D. A.
, 1994, “
Vortex Interactions With Walls
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
573
616
.
92.
Swearingen
,
J. D.
, and
Blackwelder
,
R. F.
, 1987, “
The Growth and Breakdown of Streamwise Vortices in the Presence of a Wall
,”
J. Fluid Mech.
0022-1120,
182
, pp.
255
290
.
93.
Saric
,
W. S.
, 1994, “
GöRtler Vortices
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
379
409
.
94.
Hall
,
P.
, and
Horseman
,
N. J.
, 1991, “
The Linear Inviscid Secondary Instability of Longitudinal Vortex Structures in Boundary-Layers
,”
J. Fluid Mech.
0022-1120,
232
, pp.
357
375
.
95.
Yu
,
X.
, and
Liu
,
J. T. C.
, 1991, “
The Secondary Instability of Görtler Flow
,”
Phys. Fluids A
0899-8213,
3
, pp.
1845
1847
.
96.
Park
,
D. S.
, and
Huerre
,
P.
, 1994, “
Primary and Secondary Instabilities of the Asymptotic Suction. Boundary Layer on a Curved Plate
,”
J. Fluid Mech.
0022-1120,
283
, pp.
249
272
.
97.
Morkovin
,
M. V.
, and
Reshotko
,
E.
, 1990, “
Dialogue on Progress and Issues in Instability and Transition Research
,”
Laminar-Turbulent Transition
,
D.
Arnal
and
R.
Michel
, eds.,
Springer
,
New York
, pp.
3
39
.
98.
Landahl
,
M. T.
, 1980, “
A Note on an Algebraic Instability of Inviscid Parallel Shear Flows
,”
J. Fluid Mech.
0022-1120,
98
, pp.
243
251
.
99.
Hultgren
,
L. S.
, and
Gustavsson
,
L. H.
, 1981, “
Algebraic Growth of Disturbances in a Laminar Boundary Layer
,”
Phys. Fluids
0031-9171,
24
, pp.
1000
1004
.
100.
Andersson
,
P.
,
Berggren
,
M.
, and
Henningson
,
D. S.
, 1999, “
Optimal Disturbances and Bypass Transition in Boundary Layers
,”
Phys. Fluids
1070-6631,
11
, pp.
134
150
.
101.
Luchini
,
P.
, 2000, “
Reynolds-Number-Independent Instability of the Boundary Layer Over a Flat Surface: Optimal Perturbations
,”
J. Fluid Mech.
0022-1120,
404
, pp.
289
309
.
102.
Matsubara
,
M.
,
Bakchinov
,
A. A.
,
Fransson
,
J. H. M.
, and
Alfredsson
,
P. H.
, 2000, “
Growth and Breakdown of Streaky Structures in Boundary-Layer Transition Induced by Freestream Turbulence
,”
Laminar-Turbulent Transition
,
H.
Fasel
and
W.
Saric
, eds.,
Springer
,
Sedona
.
103.
Westin
,
K. J. A.
,
Bakchinov
,
A. A.
,
Kozlov
,
V. V.
, and
Alfredsson
,
P. H.
, 1998, “
Experiments on Localized Disturbances in a Flat Plate Boundary Layer. Part 1. The Receptivity and Evolution of a Localized Free Stream Disturbance
,”
Eur. J. Mech. B/Fluids
0997-7546,
17
, pp.
823
846
.
104.
Bakchinov
,
A. A.
,
Westin
,
K. J. A.
,
Kozlov
,
V. V.
, and
Alfredsson
,
P. H.
, 1998, “
Experiments on Localized Disturbances in a Flat Plate Boundary Layer. Part 2: Interaction Between Localized Disturbances and TS-Waves
,”
Eur. J. Mech. B/Fluids
0997-7546,
17
, pp.
847
873
.
105.
Elofsson
,
P. A.
,
Kawakami
,
M.
, and
Alfredsson
,
P. H.
, 1999, “
Experiments on the Stability of Streamwise Streaks in Plane Poiseuille Flow
,”
Phys. Fluids
1070-6631,
11
, pp.
915
930
.
106.
Nakagawa
,
H.
, and
Nezu
,
I.
, 1981, “
Structure of Space-Time Correlations of Bursting Phenomena in an Open-Channel Flow
,”
J. Fluid Mech.
0022-1120,
104
, pp.
1
43
.
107.
Waleffe
,
F.
, 1995, “
On a Self-Sustaining Process in Shear Flows
,”
Phys. Fluids
1070-6631,
9
, pp.
883
900
.
108.
Waleffe
,
F.
, 1998, “
Three-Dimensional Coherent States in Plane Shear Flows
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
4140
4143
.
109.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
, 2002, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
0022-1120,
428
, pp.
185
212
.
110.
Kohama
,
Y.
, 1984, “
Study on Boundary-Layer. Transition of a Rotating Disk
,”
Acta Mech.
0001-5970,
50
, pp.
193
199
.
111.
Kohama
,
Y.
, 1987, “
Cross-Flow Instability in Rotating Disk Boundary Layer
,” AIAA Paper No. 87-1340.
112.
Kohama
,
Y.
,
Saric
,
W. S.
, and
Hoos
,
J. A.
, 1991, “
A High-Frequency, Secondary Instability of Crossflow Vortices That Leads to Transition
,”
Proceedings of Boundary Layer Transition and Control
,
Royal Aeron. Soc. London
,
Cambridge
, pp.
4.1
4.13
.
113.
Chernorai
,
V. G.
,
Spiridonov
,
A. N.
,
Katasonov
,
M. M.
, and
Kozlov
,
V. V.
, 2001, “
Generation of Perturbations by a Localized Vibrator in the Boundary Layer of a Nonswept Wing
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
42
(
5
), pp.
765
772
.
114.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
, 2001, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
0022-1120,
430
, pp.
149
168
.
115.
Taylor
,
G. I.
, 1937, “
Statistical Theory of Isotropic Turbulence
,”
J. Aeronaut. Sci.
0095-9812,
4
, pp.
311
319
.
116.
Von Karman
,
Th.
, 1937, “
On the Statistical Theory of Turbulence
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
23
, pp.
98
105
.
117.
Landahl
,
M. T.
, 1980, “
A Note on an Algebraic Instability of Inviscid Parallel Shear Flows
,”
J. Fluid Mech.
0022-1120,
98
, pp.
243
251
.
118.
Henningson
,
D. S.
,
Lundbladh
,
A.
, and
Johansson
,
A. V.
, 1993, “
A Mechanism for Bypass Transition From Localized Disturbances in Wall-Bounded Shear Flows
,”
J. Fluid Mech.
0022-1120,
250
, pp.
169
207
.
119.
Schoppa
,
W.
, and
Hussain
,
F.
, 2002, “
Coherent Structure Generation in Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
453
, pp.
57
108
.
You do not currently have access to this content.