The approach of Reynolds-averaged Navier–Stokes equations (RANS) for the modeling of turbulent flows is reviewed. The subject is mainly considered in the limit of incompressible flows with constant properties. After the introduction of the concept of Reynolds decomposition and averaging, different classes of RANS turbulence models are presented, and, in particular, zero-equation models, one-equation models (besides a half-equation model), two-equation models (with reference to the tensor representation used for a model, both linear and nonlinear models are considered), stress-equation models (with reference to the pressure-strain correlation, both linear and nonlinear models are considered) and algebraic-stress models. For each of the abovementioned class of models, the most widely-used modeling techniques and closures are reported. The unsteady RANS approach is also discussed and a section is devoted to hybrid RANS/large methods.

1.
Jackson
,
D.
, and
Launder
,
B.
, 2007, “
Osborne Reynolds and the Publication of His Papers on Turbulent Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
39
, pp.
19
35
.
2.
Boussinesq
,
J.
, 1877, “
Théorie de l’écoulement tourbillant
,”
Mem. Acad. Sci. Inst. Fr.
0368-9263,
23
, pp.
46
50
.
3.
Prandtl
,
L.
, 1925, “
Über die ausgebildete Turbulenz
,”
Z. Angew. Math. Mech.
0044-2267,
5
, pp.
136
139
.
4.
von Kármán
,
T.
, 1930, “
Mechanische Ähnlichkeit und Turbulenz
,”
3rd International Congress of Applied Mechanics
, Stockholm, pp.
85
105
.
5.
von Kármán
,
T.
, 1948, “
Progress in the Statistical Theory of Turbulence
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
34
, pp.
530
539
.
6.
Kovasznay
,
L. S.
, 1967, “
Structure of the Turbulent Boundary Layer
,”
Phys. Fluids
1070-6631,
10
, pp.
S25
S30
.
7.
Prandtl
,
L.
, 1945, “
Über ein neues Formelsystem für die augebildete Turbulenz
,”
Nachr. Akad. Wiss. Goett. II, Math.-Phys.
0065-5295,
K1
, pp.
6
19
.
8.
Hanjalić
,
K.
, and
Launder
,
B. E.
, 1972, “
A Reynolds-Stress Model of Turbulence and its Application to Thin Shear Flows
,”
J. Fluid Mech.
0022-1120,
52
, pp.
609
638
.
9.
Rotta
,
J. C.
, 1951, “
Statistische Theorie Nichthomogener Turbulenz
,”
Z. Phys.
0044-3328,
129
, pp.
547
572
.
10.
Daly
,
B. J.
, and
Harlow
,
F. H.
, 1970, “
Transport Equations in Turbulence
,”
Phys. Fluids
1070-6631,
13
, pp.
2634
2649
.
11.
Donaldson
,
C. duP.
, 1972, “
Calculation of Turbulent Shear Flows for Atmospheric and Vortex Motions
,”
AIAA J.
0001-1452,
10
, pp.
4
12
.
12.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
, 1975, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
0022-1120,
68
, pp.
537
566
.
13.
Lumley
,
J. L.
, 1979, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
0065-2156,
18
, pp.
123
176
.
14.
Launder
,
B. E.
, 1990, “
Phenomenological Modeling: Present and Future
,”
Whither Turbulence Workshop
,
Springer Verlag
,
Ithaca, NY
, pp.
439
485
.
15.
Speziale
,
C. G.
, 1985, “
Modeling the Pressure Gradient-Velocity Correlation of Turbulence
,”
Phys. Fluids
1070-6631,
28
, pp.
69
71
.
16.
Speziale
,
C. G.
, 1987, “
Second-Order Closure Models for Rotating Turbulent Flows
,”
Q. Appl. Math.
0033-569X,
45
, pp.
721
733
.
17.
Haworth
,
D. C.
, and
Pope
,
S. B.
, 1986, “
A Generalized Langevin Model for Turbulent Flows
,”
Phys. Fluids
1070-6631,
29
, pp.
387
405
.
18.
Mellor
,
G. L.
, and
Herring
,
H. J.
, 1973, “
A Survey of the Mean Turbulent Field Closure Models
,”
AIAA J.
0001-1452,
11
, pp.
590
599
.
19.
Tennekes
,
H.
, and
Lumley
,
J. L.
, 1972,
A First Course in Turbulence
,
MIT Press
,
Cambridge, MA
.
20.
Hinze
,
J. O.
, 1975,
Turbulence
,
McGraw-Hill
,
New York
.
21.
Speziale
,
C. G.
, 1991, “
Analytical Methods for the Development of Reynolds-Stress Closures in Turbulence
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
107
157
.
22.
Schumann
,
U.
, 1977, “
Realizability of Reynolds Stress Turbulence Models
,”
Phys. Fluids
1070-6631,
20
, pp.
721
725
.
23.
Lumley
,
J. L.
, 1983, “
Turbulence Modeling
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
1097
1103
.
24.
Donaldson
,
C. duP
., and
Rosenbaum
,
H.
, 1968, “
Calculation of the Turbulent Shear Flows Through Closure of the Reynolds Equations by Invariant Modeling
,” Aeronautical Research Association, Report No. 127.
25.
Lumley
,
J. L.
, 1970, “
Toward a Turbulent Constitutive Equation
,”
J. Fluid Mech.
0022-1120,
41
, pp.
413
434
.
26.
Speziale
,
C. G.
, 1989, “
Turbulence Modeling in Non-Inertial Frames of Reference
,”
Theor. Comput. Fluid Dyn.
0935-4964,
1
, pp.
3
19
.
27.
Smith
,
G. F.
, 1971, “
On Isotropic Functions of Symmetric Tensors, Skew-Symmetric Tensors and Vectors
,”
Int. J. Eng. Sci.
0020-7225,
9
, pp.
899
916
.
28.
Schlichting
,
H.
, 1968,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
29.
Cebeci
,
T.
, and
Smith
,
A. M. O.
, 1974,
Analysis of Turbulent Boundary Layers
,
Academic
,
New York
.
30.
Baldwin
,
B. S.
, and
Lomax
,
H.
, 1978, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,” AIAA Paper No. 78-257.
31.
Launder
,
B.
and
Sandham
,
N.
, eds., 2002,
Closure Strategies for Turbulent and Transitional Flows
,
Cambridge University Press
,
Cambridge, England
.
32.
Wilcox
,
D. C.
, 2001,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries and Griffin
,
Glendale, CA
.
33.
Johnson
,
D. A.
, and
King
,
L. S.
, 1985, “
A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers
,”
AIAA J.
0001-1452,
23
, pp.
1684
1692
.
34.
Kolmogorov
,
A. N.
, 1942, “
The Equations of Turbulent Motion in an Incompressible Fluid
,”
Izv., Acad. Sci., USSR, Phys. Solid Earth
0001-4354,
6
, pp.
56
58
.
35.
Bradshaw
,
P.
,
Ferriss
,
D. H.
, and
Atwell
,
N. P.
, 1967, “
Calculation of Boundary Layer Development Using the Turbulent Energy Equation
,”
J. Fluid Mech.
0022-1120,
28
, pp.
593
616
.
36.
Rodi
,
W.
, 1980,
Turbulence Models and Their Application in Hydraulics
,
IAHR
,
Delft
.
37.
Bradshaw
,
P.
,
Cebeci
,
T.
, and
Whitelaw
,
J. H.
, 1981,
Engineering Calculation Methods for Turbulent Flow
,
Academic
,
New York
.
38.
Baldwin
,
B. S.
, and
Barth
,
T. J.
, 1990, “
A One-Equation Turbulent Transport Model for High Reynolds Number Wall-Bounded Flows
,” NASA Report No. TM-102847.
39.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-439.
40.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223,
1
, pp.
5
21
.
41.
Gulyaev
,
A. N.
,
Kozlov
,
V. E.
, and
Sekundov
,
A. N.
, 1993, “
A Universal One-Equation Model for Turbulent Viscosity
,”
Fluid Dyn.
0015-4628,
28
, pp.
485
494
.
42.
Secundov
,
A. N.
,
Strelets
,
M. Kh.
, and
Travin
,
A. K.
, 2001, “
Generalization of νT-92 Turbulence Model for Shear-Free and Stagnation Point Flows
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
11
15
.
43.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
44.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
, 1985, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review
,”
AIAA J.
0001-1452,
23
, pp.
1308
1319
.
45.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
, 1971, “
Simple Eulerian Time Correlation of Full- and Narrow-Band Velocity Signals in Grid-Generated, ‘Isotropic’ Turbulence
,”
J. Fluid Mech.
0022-1120,
48
, pp.
273
337
.
46.
Tavoularis
,
S.
, and
Corrsin
,
S.
, 1981, “
Experiments in Nearly Homogeneous Turbulent Shear Flow With a Uniform Mean Temperature Gradient. Part I
,”
J. Fluid Mech.
0022-1120,
104
, pp.
311
347
.
47.
Speziale
,
C. G.
, and
Ngo
,
T.
, 1988, “
Numerical Solution of Turbulent Flow Past a Backward-Facing Step Using a Nonlinear K−ε Model
,”
Int. J. Eng. Sci.
0020-7225,
26
, pp.
1099
1112
.
48.
Kim
,
J.
,
Kline
,
S. J.
, and
Johnston
,
J. P.
, 1980, “
Investigation of a Reattaching Turbulent Shear Layer: Flow Over a Backward-Facing Step
,”
ASME J. Fluids Eng.
0098-2202,
102
, pp.
302
308
.
49.
Avva
,
R. K.
,
Kline
,
S. J.
, and
Ferziger
,
J. H.
, 1988, “
Computation of the Turbulent Flow Over a Backward-Facing Step Using the Zonal Modeling Approach
,” Stanford University, Report No. TF-33.
50.
Yakhot
,
V.
, and
Orszag
,
S. A.
, 1986, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
0885-7474,
1
, pp.
3
51
.
51.
Speziale
,
C. G.
, and
Mac Giolla Mhuiris
,
N.
, 1989, “
On the Prediction of Equilibrium States in Homogeneous Turbulence
,”
J. Fluid Mech.
0022-1120,
209
, pp.
591
615
.
52.
Speziale
,
C. G.
,
Gatski
,
T. B.
, and
Mac Giolla Mhuiris
,
N.
, 1989, “
A Critical Comparison of Turbulence Models for Homogeneous Shear Flows in a Rotating Frame
,”
Seventh Symposium on Turbulence and Shear Flows
,
Stanford University Press
,
Stanford
, Vol.
2
, pp.
27.3.1
27.3.6
.
53.
Mellor
,
G. L.
, and
Yamada
,
T.
, 1974, “
A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers
,”
J. Atmos. Sci.
0022-4928,
31
, pp.
1791
1806
.
54.
Speziale
,
C. G.
, 1990, “
Discussion of Turbulence Modeling: Present and Future
,”
Whither Turbulence Work
,
Springer Verlag
,
Ithaca, NY
, pp.
490
512
.
55.
Wilcox
,
D. C.
, and
Traci
,
R. M.
, 1976, “
A Complete Model of Turbulence
,” AIAA Paper No. 76-351.
56.
Wilcox
,
D. C.
, 1988, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
0001-1452,
26
, pp.
1299
1310
.
57.
Menter
,
F. R.
, 1993, “
Zonal Two Equation k−ω
Turbulence Models for Aerodynamic Flows,” AIAA Paper No. 93-2906.
58.
Saffman
,
P. G.
, 1977, “
Results of a Two-Equation Model for Turbulent Flows and Development of a Relaxation Stress Model for Application to Straining and Rotating Flows
,”
Turbulence and Internal Flows
,
Hemisphere
,
Washington, DC
, pp.
191
231
.
59.
Pope
,
S. B.
, 1975, “
A More General Effective Viscosity Hypothesis
,”
J. Fluid Mech.
0022-1120,
72
, pp.
331
340
.
60.
Rodi
,
W.
, 1976, “
A New Algebraic Relation for Calculating the Reynolds Stresses
,”
ZAMM
0044-2267,
56
, pp.
T219
T221
.
61.
Yoshizawa
,
A.
, 1984, “
Statistical Analysis of the Deviation of the Reynolds Stress From its Eddy Viscosity Representation
,”
Phys. Fluids
1070-6631,
27
, pp.
1377
1387
.
62.
Yoshizawa
,
A.
, 1987, “
Statistical Modeling of a Transport Equation for the Kinematc Energy Dissipation Rate
,”
Phys. Fluids
1070-6631,
30
, pp.
628
631
.
63.
Kraichnan
,
R. H.
, 1964, “
Direct Interaction Approximation for Shear and Thermally Driven Turbulence
,”
Phys. Fluids
1070-6631,
7
, pp.
1048
1062
.
64.
Nisizima
,
S.
, and
Yoshizawa
,
A.
, 1987, “
Turbulent Channel and Couette Flows Using an Anisotropic K−ε Model
,”
AIAA J.
0001-1452,
25
, pp.
414
420
.
65.
Speziale
,
C. G.
, 1987, “
On Nonlinear K−l and K−ε Models of Turbulence
,”
J. Fluid Mech.
0022-1120,
178
, pp.
459
475
.
66.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
, 1996, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
108
115
.
67.
Weinstock
,
J.
, 1981, “
Theory of the Pressure-Strain Rate Correlation for Reynolds Stress Turbulence Closures. Part 1
,”
J. Fluid Mech.
0022-1120,
105
, pp.
369
396
.
68.
Reynolds
,
W. C.
, 1987, “
Fundamentals of Turbulence for Turbulence Modeling and Simulation
,”
Lecture Notes von Kármán Institute
(
AGARD Lecture Series
),
von Kármán Institute for Fluid Dynamics
,
Rhode-St-Gènese (Belgium)
, Vol.
86
, pp.
1
66
.
69.
Rotta
,
J. C.
, 1972, “
Recent Attempts to Develop a Generally Applicable Calculation Method for Turbulent Shear Flow Layers
,” AGARD Paper No. CP-93.
70.
Hanjalić
,
K.
, and
Launder
,
B. E.
, 1976, “
Contribution Towards a Reynolds Stress Closure for Low Reynolds Number Turbulence
,”
J. Fluid Mech.
0022-1120,
74
, pp.
593
610
.
71.
Sarkar
,
S.
, and
Speziale
,
C. G.
, 1990, “
A Simple Nonlinear Model for the Return to Isotropy in Turbulence
,”
Phys. Fluids A
0899-8213,
2
, pp.
84
93
.
72.
Shih
,
T. H.
, and
Lumley
,
J. L.
, 1985, “
Modeling of Pressure Correlation Terms in Reynolds Stress and Scalar Flux Equations
,” Cornell University, Report No. FDA-85-3.
73.
Fu
,
S.
,
Launder
,
B. E.
, and
Tselepidakis
,
D. P.
, 1987, “
Accommodating the Effects of High Strain Rates in Modelling the Pressure-Strain Correlation
,” Manchester University, Report No. TDF-87-5.
74.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
, 1991, “
Modeling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
0022-1120,
227
, pp.
245
272
.
75.
Choi
,
K. S.
, and
Lumley
,
J. L.
, 1984, “
Return to Isotropy of Homogeneous Turbulence Revisited
,”
Turbulence and Chaotic Phenomena in Fluids
,
North-Holland
,
Amsterdam
, pp.
267
273
.
76.
Lee
,
M. J.
, and
Reynolds
,
W. C.
, 1985, “
Numerical Experiments on the Structure of Homogeneous Turbulence
,” Stanford University, Report No. TF-24.
77.
Speziale
,
C. G.
, 1996, “
Modeling of Turbulent Transport Equations
,”
Simulation and Modeling of Turbulent Flows
(
ICASE/LaRC Series Computer Science and Engineering
),
Oxford University Press
,
New York
.
78.
Tavoularis
,
S.
, and
Karnik
,
U.
, 1989, “
Further Experiments on the Evolution of Turbulent Stresses and Scales in Uniformly Sheared Turbulence
,”
J. Fluid Mech.
0022-1120,
204
, pp.
457
478
.
79.
Laufer
,
J.
, 1951, “
Investigation of Turbulent Flow in a Two-Dimensional Channel
,” NACA Report No. TN-1053.
80.
Demuren
,
A. O.
, and
Sarkar
,
S.
, 1993, “
Perspective: Systematic Study of Reynolds Stress Closure Models in the Computations of Plane Channel Flows
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
5
12
.
81.
Abid
,
R.
, and
Speziale
,
C. G.
, 1993, “
Predicting Equilibrium States With Reynolds Stress Closures in Channel Flow and Homogeneous Shear Flow
,”
Phys. Fluids A
0899-8213,
5
, pp.
1776
1782
.
82.
Launder
,
B. E.
,
Tselepidakis
,
D. P.
, and
Younis
,
B. A.
, 1987, “
A Second-Moment Closure Study of Rotating Channel Flow
,”
J. Fluid Mech.
0022-1120,
183
, pp.
63
75
.
83.
Speziale
,
C. G.
,
Gatski
,
T. B.
, and
Sarkar
,
S.
, 1992, “
On Testing Models for the Pressure-Strain Correlation of Turbulence Using Direct Simulations
,”
Phys. Fluids A
0899-8213,
4
, pp.
2887
2899
.
84.
Durbin
,
P. A.
, and
Speziale
,
C. G.
, 1991, “
Local Anisotropy in Strained Turbulence at High Reynolds Numbers
,”
ASME J. Fluids Eng.
0098-2202,
113
, pp.
707
709
.
85.
Bernard
,
P. S.
, and
Speziale
,
C. G.
, 1992, “
Bounded Energy States in Homogeneous Turbulent Shear Flow—An Alternative View
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
29
39
.
86.
Speziale
,
C. G.
, and
Gatski
,
T. B.
, 1992, “
Modeling Anisotropies in the Dissipation Rate of Turbulence
,”
Bull. Am. Phys. Soc.
0003-0503,
37
, p.
1799
.
87.
Speziale
,
C. G.
, and
Gatski
,
T. B.
, 1995, “
Analysis and Modeling of Anisotropies in the Dissipation Rate of Turbulence
,” Boston University, Report No. AM-95-026.
88.
Gatski
,
T. B.
, and
Speziale
,
C. G.
, 1993, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
254
, pp.
59
78
.
89.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, England
.
90.
Rubinstein
,
R.
, and
Barton
,
J. M.
, 1990, “
Nonlinear Reynolds Stress Models and the Renormalization Group
,”
Phys. Fluids A
0899-8213,
2
, pp.
1472
1476
.
91.
Zhou
,
Y.
,
Vahala
,
G.
, and
Thangam
,
S.
, 1994, “
Development of a Turbulence Model Based on Recursion Renormalization Group Theory
,”
Phys. Rev. E
1063-651X,
49
, pp.
5195
5206
.
92.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
, 1992, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
0899-8213,
4
, pp.
1510
1520
.
93.
Shih
,
T. H.
,
Zhu
,
J.
, and
Lumley
,
J. L.
, 1993, “
A Realizable Reynolds Stress Algebraic Equation Model
,” NASA Paper No. TM-105993.
94.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Reynolds
,
W. C.
, 1983, “
Improved Turbulence Models Based on Large-Eddy Simulations of Homogeneous, Incompressible Turbulent Flows
,” Stanford University, Report No. TF-19.
95.
Johnston
,
J. P.
,
Halleen
,
R. M.
, and
Lezius
,
D. K.
, 1972, “
Effects of a Spanwise Rotation on the Structure of Two-Dimensional Fully-Developed Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
56
, pp.
533
557
.
96.
Tucker
,
P. G.
, 2001,
Computation of Unsteady Internal Flows
,
Kluwer Academic
,
Dordrecht
.
97.
Franke
,
R.
, and
Rodi
,
W.
, 1993, “
Calculation of Vortex Shedding Past a Square Cylinder With Various Turbulence Models
,”
Eighth International Symposium on Turbulent Shear Flows
, Munich, pp.
189
204
.
98.
Johansson
,
S. H.
,
Davidson
,
L.
, and
Olsson
,
E.
, 1993, “
Numerical Simulation of Vortex Shedding Past Triangular Cylinders at High Reynolds Number Using the k−ε Turbulence Model
,”
Int. J. Numer. Methods Fluids
0271-2091,
16
, pp.
859
878
.
99.
Przulj
,
V.
, and
Younis
,
B. A.
, 1993, “
Some Aspects of the Prediction of Turbulent Vortex Shedding
,”
ASME Fluids Engineering Conference
, Washington DC, Vol.
149
, pp.
75
81
.
100.
Long
,
C. A.
,
Morse
,
A. P.
, and
Tucker
,
P. G.
, 1997, “
Measurement and Computation of Heat Transfer in High-Pressure Compressor Drum Geometries With Axial Throughflow
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
51
60
.
101.
Tucker
,
P. G.
, and
Long
,
C. A.
, 1996, “
Numerical Investigation Into Influence of Geometry on Flow in a Rotating Cavity With an Axial Throughflow
,”
Int. Commun. Heat Mass Transfer
0735-1933,
23
, pp.
335
344
.
102.
Orszag
,
S. A.
,
Borue
,
V.
,
Flannery
,
W. S.
, and
Tomboulides
,
A. G.
, 1997, “
Recent Successes, Current Problems and Future Prospects of CFD
,” AIAA Paper No. 97-0431.
103.
Shur
,
M.
,
Spalart
,
P.
,
Stretlets
,
M.
, and
Travin
,
A.
, 1996, “
Navier–Stokes Simulation of Shedding Turbulent Flow Past a Circular Cylinder and a Cylinder With Backward Splitter Plate
,”
Third ECCOMAS Computational Fluid Dynamics Conference
, Paris, pp.
676
682
.
104.
Bosch
,
G.
, and
Rodi
,
W.
, 1998, “
Simulation of Vortex Shedding Past a Square Cylinder With Different Turbulence Models
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
601
616
.
105.
Tucker
,
P. G.
, 2000, “
Prediction of Turbulent Oscillatory Flows in Complex Systems
,”
Int. J. Numer. Methods Fluids
0271-2091,
33
, pp.
869
895
.
106.
Tatsumi
,
K.
,
Iwai
,
H.
,
Neo
,
E. C.
,
Ianoka
,
K.
, and
Suzuki
,
K.
, 1999, “
Prediction of Time-Mean Characteristics and Periodical Fluctuations of Velocity and Thermal Fields of a Backward-Facing Step
,”
First International Symposium on Turbulence and Shear Flows
, Santa Barbara, pp.
139
144
.
107.
Kimura
,
I.
, and
Hosoda
,
T.
, 1999, “
3D Unsteady Flow Structures Around Rectangular Column in Open Channels by Means of Non-Linear k−ε
Models,”
First International Symposium on Turbulence and Shear Flows
, Santa Barbara, pp.
1001
1006
.
108.
Kato
,
M.
, and
Launder
,
B. E.
, 1993, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Ninth Symposium on Turbulent Shear Flows
, Kyoto, pp.
10
-4-1–10-4-
6
.
109.
Barakos
,
G.
, and
Drikakis
,
D.
, 1999, “
Numerical Simulation of Transonic Buffet Flows Using Various Turbulence Closures
,”
First International Symposium on Turbulence and Shear Flows
, Santa Barbara, pp.
995
1000
.
110.
Yao
,
Y. F.
,
Savill
,
A. M.
,
Sandham
,
N. D.
, and
Dawes
,
W. N.
, 2000, “
Simulation of a Turbulent Trailing Edge Flow Using Unsteady RANS and DNS
,”
Third International Symposium on Turbulence Heat and Mass Transfer
, Nagoya, pp.
463
470
.
111.
Alsemgeest
,
R.
,
Shaw
,
C. T.
,
Richardson
,
S. H.
, and
Pierson
,
S.
, 2000, “
Modeling the Time-Dependent Flow Through a Throttle Valve
,” SAE Technical Paper No. 2000-01-0659.
112.
Nishimura
,
M.
,
Tokuhiro
,
A.
,
Kimura
,
N.
, and
Kamide
,
H.
, 1999, “
Computational Study on Quasi-Planar Jets Mixing With Low Reynolds Number Turbulent Stress and Flux Equation Models
,”
Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, San Francisco.
113.
Pascal
,
H.
,
Jakirlic
,
S.
, and
Hanjalic
,
K.
, 2000, “
DNS and RANS-Modeling of In-Cylinder Turbulence Subjected to Axial Compression
,”
Third International Symposium on Turbulence Heat and Mass Transfer
, Nagoya, pp.
479
486
.
114.
Sagaut
,
P.
, 2006,
Large Eddy Simulation for Incompressible Flows
,
Springer
,
New York
.
115.
Quéméré
,
P.
,
Sagaut
,
P.
, and
Couaillier
,
V.
, 2001, “
A New Multidomain/Multiresolution Technique for Large-Eddy Simulation
,”
Int. J. Numer. Methods Fluids
0271-2091,
36
, pp.
391
416
.
116.
Bagget
,
J. S.
, 1998, “
On the Feasibility of Merging LES With RANS for the Near-Wall Region of Attached Turbulent Flows
,”
Annual Research Briefs
,
Center for Turbulence Research
,
Stanford (California)
, pp.
267
277
.
117.
Morris
,
P. J.
,
Long
,
L. N.
,
Bangalore
,
A.
, and
Wang
,
Q.
, 1997, “
A Parallel Three-Dimensional Computational Aeroacoustics Method Using Nonlinear Disturbance Equations
,”
J. Comput. Phys.
0021-9991,
133
, pp.
56
74
.
118.
Germano
,
M.
, 1999, “
From RANS to DNS: Towards a Bridging Model
,”
Direct and Large Eddy Simulation III
,
Kluwer
,
Dordrecht
, pp.
225
236
.
119.
Speziale
,
C. G.
, 1998, “
A Combined Large-Eddy Simulation and Time-Dependent RANS Capability for High-Speed Compressible Flow
,”
J. Sci. Comput.
0885-7474,
13
, pp.
253
274
.
120.
Speziale
,
C. G.
, 1998, “
Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,”
AIAA J.
0001-1452,
36
, pp.
173
184
.
121.
Fasel
,
H. F.
,
Seidel
,
J.
, and
Wernz
,
S.
, 2002, “
A Methodology for Simulations of Complex Turbulent Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
933
942
.
122.
Peltier
,
L. J.
, and
Zajaczkowski
,
F. J.
, 2001, “
Maintenance of the Near-Wall Cycle of Turbulence for Hybrid RANS/LES of Fully Developed Channel Flow
,”
DNS/LES Progress and Challenges
,
Greyden
,
Columbus, OH
, pp.
829
834
.
123.
Arunajatesan
,
S.
, and
Sinha
,
N.
, 2000, “
Towards hybrid LES-RANS Computations of Cavity Flowfields
,” AIAA Paper No. 2000-0401.
124.
Arunajatesan
,
S.
, and
Sinha
,
N.
, 2001, “
Unified Unsteady RANS-LES Simulations of Cavity Flowfields
,” AIAA Paper No. 2001-0516.
125.
Zhao
,
F.
,
Zhu
,
S. P.
, and
Zhang
,
Z. R.
, 2005, “
Numerical Experiments of a Benchmark Hull Based on a Turbulent Free-Surface Flow Model
,”
Comput. Model. Eng. Sci.
1526-1492,
9
, pp.
273
285
.
126.
Ramesh
,
V.
,
Vengadesan
,
S.
, and
Narasimhan
,
J. L.
, 2006, “
3D Unsteady RANS Simulation of Turbulent Flow Over Bluff Body by Non-Linear Model
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
16
, pp.
660
673
.
127.
Jouvray
,
A.
,
Tucker
,
P. G.
, and
Liu
,
Y.
, 2007, “
On Nonlinear RANS Models When Predicting More Complex Geometry Room Air Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
275
288
.
128.
Hofmann
,
H. M.
,
Kaiser
,
R.
,
Kind
,
M.
, and
Martin
,
H.
, 2007, “
Calculations of Steady and Pulsating Impinging Jets—An Assessment of 13 Widely Used Turbulence Models
,”
Numer. Heat Transfer, Part B
1040-7790,
51
, pp.
565
583
.
129.
Thai
,
Z. J.
,
Zhang
,
W.
,
Zhang
,
Z.
, and
Chen
,
Q. Y.
, 2007, “
Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 1—Summary of Prevalent Turbulence Models
,”
HVAC&R Res.
,
13
, pp.
853
870
.
130.
Zhang
,
Z.
,
Thai
,
Z. Q.
,
Zhang
,
W.
, and
Chen
,
Q. Y.
, 2007, “
Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 2—Comparison With Experimental Data From Literature
,”
HVAC&R Res.
,
13
, pp.
871
886
.
131.
Jang
,
Y. J.
, 2008, “
An Investigation of Higher-Order Closures in the Computation of the Flow Around a Generic Car
,”
J. Mech. Sci. Technol.
1738-494X,
22
, pp.
1019
1029
.
132.
Hanjalić
,
K.
, and
Kejernes
,
S.
, 2008, “
Some Developments in Turbulence Modeling for Wind and Environmental Engineering
,”
J. Wind Eng. Ind. Aerodyn.
,
96
, pp.
1537
1570
.
133.
Keck
,
H.
, and
Sick
,
M.
, 2008, “
Thirty Years of Numerical Flow Simulation in Hydraulic Turbomachines
,”
Acta Mech.
0001-5970,
201
, pp.
211
229
.
You do not currently have access to this content.