Hopkinson bar experimental techniques have been extensively employed to investigate the mechanical response and fracture behavior of engineering materials under high rate loading. Among these applications, the study of the dynamic fracture behavior of materials at stress-wave loading conditions (corresponding stress-intensity factor rate 106MPam/s) has been an active research area in recent years. Various Hopkinson bar loading configurations and corresponding experimental methods have been proposed to date for measuring dynamic fracture toughness and investigating fracture mechanisms of engineering materials. In this paper, advances in Hopkinson bar loaded dynamic fracture techniques over the past 30 years, focused on dynamic fracture toughness measurement, are presented. Various aspects of Hopkinson bar fracture testing are reviewed, including (a) the analysis of advantages and disadvantages of loading systems and sample configurations; (b) a discussion of operating principles for determining dynamic load and sample displacement in different loading configurations; (c) a comparison of various methods used for determining dynamic fracture parameters (load, displacement, fracture time, and fracture toughness), such as theoretical formula, optical gauges, and strain gauges; and (d) an update of modeling and simulation of loading configurations. Fundamental issues associated with stress-wave loading, such as stress-wave propagation along the elastic bars and in the sample, stress-state equilibrium validation, incident pulse-shaping effect, and the “loss-of-contact” phenomenon are also addressed in this review.

1.
Chuban
,
V. D.
,
Ivanteyev
,
V. I.
,
Chudayev
,
B. J.
,
Avdeyev
,
E. P.
, and
Shvilkin
,
V. A.
, 2002, “
Numerical Simulation of Flutter Validated by Flight-Test Data for TU-204 Aircraft
,”
Comput. Struct.
0045-7949,
80
, pp.
2551
2563
.
2.
Saeedi
,
M. A.
, and
Barkhordari
,
M. A.
, 1999, “
Dynamic Behaviour of Space Structures Using Models of Different Pattern Density
,”
Computing Developments in Civil and Structural Engineering
,
Civil-Comp
,
Edinburgh, UK
, pp.
59
63
.
3.
Sinha
,
G.
, and
Mukhopadhyay
,
M.
, 1995, “
Transient Dynamic Response of Arbitrary Stiffened Shells by the Finite Element Method
,”
ASME J. Vibr. Acoust.
0739-3717,
117
, pp.
11
16
.
4.
Ghoshal
,
A.
,
Harrison
,
J.
,
Sundaresan
,
M. J.
,
Hughes
,
D.
, and
Schulz
,
M. J.
, 2001, “
Damage Detection Testing on a Helicopter Flexbeam
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
12
, pp.
315
330
.
5.
Ravichandran
,
G.
, and
Clifton
,
R. J.
, 1989, “
Dynamic Fracture Under Plane Wave Loading
,”
Int. J. Fract.
0376-9429,
40
, pp.
157
201
.
6.
Prakash
,
V.
,
Freund
,
L. B.
, and
Clifton
,
R. J.
, 1992, “
Stress Wave Radiation From a Crack Tip During Dynamic Initiation
,”
ASME Summer Mechanics and Materials Meeting
,
American Society of Mechanical Engineers
,
New York
, pp.
1
10
.
7.
Hopkinson
,
B.
, 1914, “
A Method of Measuring the Pressure Produced in the Detonation of High Explosive or by the Impact of Bullets
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
213
, pp.
437
456
.
8.
Davies
,
R. M.
, 1948, “
A Critical Study of the Hopkinson Pressure Bar
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
240
(
821
), pp.
375
457
.
9.
Kolsky
,
H.
, 1949, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. London, Sect. B
0370-1301,
62
(
II
), pp.
676
700
.
10.
Lindholm
,
U. S.
, and
Yeakley
,
L. M.
, 1968, “
High Strain-Rate Testing: Tension and Compression
,”
Exp. Mech.
0014-4851,
8
, pp.
1
9
.
11.
Nicholas
,
T.
, 1981, “
Tensile Testing of Materials at High Rates of Strain
,”
Exp. Mech.
0014-4851,
21
, pp.
177
185
.
12.
Nguyen
,
C. H.
, and
Schindler
,
H. J.
, 1997, “
On Spurious Reflection Wave in Hopkinson Bar Tensile Tests Using a Collar
,”
J. Phys. IV
1155-4339,
7
, pp.
85
89
.
13.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Starrett
,
J. E.
, 1991, “
Hopkinson Technique for Dynamic Recovery Experiments
,”
Proc. R. Soc. London, Ser. A
0950-1207,
435
, pp.
371
391
.
14.
Li
,
Z.
,
Bi
,
X.
,
Lambros
,
J.
, and
Geubelle
,
P. H.
, 2001, “
Dynamic Fiber Debonding and Frictional Push-Out in Mode Composite System: Experimental Observations
,”
Exp. Mech.
0014-4851,
42
, pp.
417
425
.
15.
Bi
,
X.
,
Li
,
Z.
,
Geubelle
,
P. H.
, and
Lambros
,
J.
, 2002, “
Dynamic Fiber Debonding and Frictional Push-Out in Model Composite Systems: Numerical Simulations
,”
Mech. Mater.
0167-6636,
34
, pp.
433
446
.
16.
Bragov
,
A. M.
, and
Lomunov
,
A. K.
, 1995, “
Methodological Aspects of Studying Dynamic Material Properties Using the Kolsky Method
,”
Int. J. Impact Eng.
0734-743X,
16
, pp.
321
330
.
17.
Dosch
,
J.
, and
Jing
,
L.
, 1999, “
Hopkinson Bar Acceptance Testing for Shock Accelerometers
,”
Sound Vib.
0038-1810,
33
, pp.
16
21
.
18.
Bateman
,
V.
, and
Thacker
,
P. D.
, 2002, “
Certification of 200,000 g Shock Calibration Technique for Sensors
,”
J. IEST
,
45
, pp.
121
128
. 1098-4321
19.
Ogawa
,
K.
, 1997, “
Impact Friction Test Method by Applying Stress Wave
,”
Exp. Mech.
0014-4851,
37
, pp.
398
402
.
20.
Sharma
,
V.
,
Nemat-Nasser
,
S.
, and
Vecchio
,
K. S.
, 1994, “
Dynamic-Compression Fatigue of Hot-Pressed Silicon-Nitride
,”
Exp. Mech.
0014-4851,
34
, pp.
315
323
.
21.
Zhang
,
M.
,
Yang
,
P.
, and
Tan
,
Y.
, 1999, “
Micromechanisms of Fatigue Crack Nucleation and Short Crack Growth in a Low Carbon Steel Under Low Cycle Impact Fatigue Loading
,”
Int. J. Fatigue
0142-1123,
21
, pp.
823
830
.
22.
Mines
,
R. A. W.
, 1990, “
Characterization and Measurement of the Mode I Dynamic Initiation of Cracks in Metals at Intermediate Strain Rates—A Review
,”
Int. J. Impact Eng.
0734-743X,
9
, pp.
441
454
.
23.
Klepaczko
,
J. R.
, 1990, “
Dynamic Crack Initiation, Some Experimental Methods and Modeling
,”
Crack Dynamic in Metallic Materials
,
J. R.
Klepaczko
, ed.,
Springer
,
New York
, pp.
255
453
.
24.
Fernández-Sáez
,
J.
,
Pérez-Castellanos
,
J. L.
,
Rubio
,
L.
,
De Luna
,
S.
, and
Navarro
,
C.
, 2001, “
Recent Experimental Developments in Dynamic Fracture Mechanics
,”
New Experimental Methods in Material Dynamics and Impact
,
W. K.
Nowacki
and
J. R.
Klepaczko
, eds.,
INB ZTUREK
,
Poland
, pp.
85
108
.
25.
Rittel
,
D.
, 2006, “
Dynamic Crack Initiation Toughness
,”
Dynamic Fracture Mechanics
,
A.
Shukla
, ed.,
World Scientific
,
Singapore
, pp.
69
163
.
26.
Costin
,
L. S.
,
Duffy
,
J.
, and
Freund
,
L. B.
, 1976, “
Fracture Initiation in Metals Under Stress Wave Loading Conditions
,” Brown University, Technical Report No. NSF Eng. 75-09612/1.
27.
Costin
,
L. S.
,
Duffy
,
J.
, and Freund, L. B., 1977, “
Fracture Initiation in Metals Under Stress Wave Loading Conditions
,”
Fast Fracture and Crack Arrest
,
American Science for Testing Materials
,
Philadelphia, PA
, ASTM STP 627, pp.
301
318
.
28.
Cho
,
K.
,
Lee
,
S.
,
Chang
,
Y. W.
, and
Duffy
,
J.
, 1991, “
Dynamic Fracture Behavior of SiC Whisker-Reinforced Aluminum Alloys
,”
Metall. Trans. A
0360-2133,
22A
, pp.
367
375
.
29.
Duffy
,
J.
,
Suresh
,
S.
,
Cho
,
K.
, and
Bopp
,
E. R.
, 1988, “
A Method for Dynamic Fracture Initiation Testing of Ceramic
,”
ASME J. Eng. Mater. Technol.
0094-4289,
110
, pp.
325
331
.
30.
Suresh
,
S.
,
Nakamura
,
T.
,
Yeshurun
,
Y.
,
Yang
,
K. -H.
, and
Duffy
,
J.
, 1990, “
Tensile Fracture Toughness of Ceramic Materials. Effects of Dynamic Loading and Elevated Temperatures
,”
J. Am. Ceram. Soc.
0002-7820,
73
, pp.
2457
2466
.
31.
Costin
,
L. S.
, and
Duffy
,
J.
, 1979, “
The Effect of Loading Rate and Temperature on the Initiation of Fracture in a Mild, Rate-Sensitive Steel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
101
, pp.
258
264
.
32.
Wilson
,
M. L.
,
Hawley
,
R. H.
, and
Duffy
,
J.
, 1980, “
Effect of Loading Rate and Temperature on Fracture Initiation in 1020 Hot-Rolled Steel
,”
Eng. Fract. Mech.
0013-7944,
13
, pp.
371
385
.
33.
Duffy
,
J.
,
Shih
,
C. F.
,
Freund
,
L. B.
, and
Hawley
,
R. H.
, 1985, “
Fracture Initiation by Stress Wave Loading
,
J. Phys. Colloq.
0449-1947,
46
, pp.
163
169
.
34.
Nakamura
,
T.
,
Shih
,
C. F.
, and
Freund
,
L. B.
, 1985, “
Elastic-Plastic Analysis of a Dynamically Loaded Circumferentially Notched Round Bar
,”
Eng. Fract. Mech.
0013-7944,
22
, pp.
437
452
.
35.
Duffy
,
J.
, and
Shih
,
C. F.
, 1989, “
Dynamic Fracture Toughness Measurement Methods for Brittle and Ductile Materials
,”
Advances in Fracture Research
,
K.
Salama
,
K.
Ravi-Chandar
,
D. M. R.
Taplin
, and
P.
Rama Rao
, eds.,
Pergamon Press
,
Oxford
, ICF7, pp.
633
642
.
36.
Cho
,
K.
,
Sklenak
,
J. P.
, and
Duffly
,
J.
, 1990, “
Dynamic Fracture Behavior of Structural Steel
,”
Fracture Mechanics: 21st Symposium
,
J. P.
Gudas
,
J. A.
Joyce
, and
E. M.
Hacket
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, ASTM STP 1074, pp.
126
143
.
37.
Prakash
,
V.
, and
Clifton
,
J. R.
, 1992,
Experimental and Analytical Investigation of Dynamic Fracture Under Conditions of Plane Strain
,
H. A.
Ernst
,
A.
Saxena
, and
D. L.
McDowell
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, ASTM STP 1131, pp.
412
444
.
38.
Couque
,
H.
,
Asaro
,
R. J.
,
Duffy
,
J.
, and
Lee
,
S. H.
, 1988, “
Correlations of Microstructure With Dynamic and Quasi-Static Fracture in a Plain Carbon Steel
,”
Metall. Trans. A
0360-2133,
19A
, pp.
2179
2206
.
39.
Homma
,
H.
,
Ushiro
,
T.
, and
Nakazawa
,
H.
, 1976, “
On Crack Growth Under a Single Stress Pulse
,”
Proceedings of the Second International Conference on Mechanical Behavior of Materials
, pp.
1453
1457
.
40.
Homma
,
H.
,
Shockey
,
D. A.
, and
Murayama
,
Y.
, 1983, “
Response of Cracks in Structural Materials to Short Pulse Loads
,”
J. Mech. Phys. Solids
0022-5096,
31
, pp.
261
279
.
41.
Kathoff
,
J. F.
,
Shockey
,
D. A.
, and
Homma
,
H.
, 1984, “
Short Pulse Fracture Mechanics
,”
Mechanical Properties at High Rates of Strain
,
J.
Harding
, ed.,
The Institute of Physics
,
Bristol, London
, pp.
205
211
.
42.
Couque
,
H.
,
Hudak
,
S. J.
, Jr.
, and
Lindholm
,
U. S.
, 1988, “
On the Use of Coupled Pressure Bars to Measure the Dynamic Fracture Initiation and Crack Propagation Toughness of Pressure Vessel Steels
,”
J. Phys. Colloq.
0449-1947,
9
, pp.
347
352
.
43.
Couque
,
H.
,
Dexter
,
R. J.
,
Leung
,
C. P.
, and
Hudak
,
S. J.
, Jr.
, 1992, “
Dynamic Ductile Fracture of a Low-Strength Steel
,”
J. Phys. III
1155-4320,
2
, pp.
2239
2246
.
44.
Couque
,
H.
,
Leung
,
C. P.
, and
Hudak
,
S. J.
, Jr.
, 1994, “
Effect of Planar Size and Dynamic Loading Rate on Initiation and Propagation Toughness of a Moderate-Toughness Steel
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
249
267
.
45.
Couque
,
H.
, 1994, “
Effect of Loading Rate on the Plane Stress Fracture Toughness Properties of an Aluminum Alloy
,”
J. Phys. IV
1155-4339,
4
, pp.
747
752
.
46.
Couque
,
H.
, 2001, “
Dynamic Fracture Toughness Testing Under Plane Stress and Plane Stain Conditions
,”
New Experimental Methods in Material Dynamics and Impact
,
W. K.
Nowacki
and
J. R.
Klepaczko
, eds.,
INB ZTUREK
,
Poland
, pp.
59
84
.
47.
Dormeval
,
R.
,
Chevallier
,
J. M.
, and
Stelly
,
M.
, 1981, “
Fracture initiation of metals at high loading rates
,”
Advances in Fracture Research
(
Fracture
81
),
D.
Francois
,
C.
Bathias
,
B. A.
Bilby
,
Y.
D'escatha
,
J.
Knott
,
R.
Labbens
,
T. C.
Lindley
,
A.
Pelissier-Tanon
,
P.
Petrequin
,
A.
Pineau
,
J.
Poibier
,
G.
Sanz
,
E.
Sommer
, and
L. E.
Steele
, eds.,
Pergamon Press
,
Oxford
, pp.
355
362
.
48.
Chevallier
,
J. M.
,
Ansart
,
J. P.
, and
Dormeral
,
R.
, 1984, “
Fracture Toughness of Some Metals Under High Loading Rate Conditions
,”
Mechanical Properties at High Rates of Strain
,
J.
Harding
, ed.,
The Institute of Physics
,
Bristol, London
, pp.
229
236
.
49.
Bensussan
,
Ph.
, 1988, “
Fracture Dynamics of 35NCD 16 Steel
,”
J. Phys. Colloq.
0449-1947,
49
, pp.
199
206
.
50.
Roudier
,
Ph.
, 1991, “
Investigation of Ductile Fracture Toughness Loading Rate Dependence of TA6V in Terms of a Local Approach
,”
J. Phys. IV
1155-4339,
1
, pp.
719
725
.
51.
Roudier
,
Ph.
, and
Francois
,
D.
, 1996, “
Dynamic Fracture Toughness Measurements and Local Approach Modeling of Titanium Alloys
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
19
, pp.
1317
1327
.
52.
Xia
,
Y.
,
Rao
,
S.
, and
Yang
,
B.
, 1994, “
A Novel Method for Measuring Plane Stress Dynamic Fracture Toughness
,”
Eng. Fract. Mech.
0013-7944,
48
, pp.
17
24
.
53.
Owen
,
D. M.
,
Zhuang
,
S.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
, 1998, “
Experimental Determination of Dynamic Crack Initiation and Propagation Fracture Toughness in Thin Aluminum Sheets
,”
Int. J. Fract.
0376-9429,
90
, pp.
153
174
.
54.
Nemat-Nasser
,
S.
,
Isaacs
,
J.
,
Lischer
,
D.
, and
Azhdari
,
A.
, 1998, “
Dynamic Fracture Toughness of Miniature Specimens Using a New Recovery Hopkinson Technique
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
373
, pp.
237
241
.
55.
Stroppe
,
H.
,
Schreppel
,
U.
, and
Clos
,
R.
, 1978,
Proceeding of The Seventh Conference of Materials Testing
, Budapest, p.
329
.
56.
Stroppe
,
H.
,
Schreppel
,
U.
, and
Clos
,
R.
, 1988, “
Dynamic Fracture of Steel at Short Loading Times
,”
Impact Loading and Dynamic Behaviour of Materials
,
C. Y.
Chiem
,
H. -D.
Kunze
, and
L. W.
Meyer
, eds.,
DGM Informationsgesellschaft
,
Verlag, West Germany
, pp.
161
167
.
57.
Stroppe
,
H.
,
Clos
,
R.
, and
Schreppel
,
U.
, 1992, “
Determination of the Dynamic Fracture Toughness Using a New Stress Pulse Loading Method
,”
Nucl. Eng. Des.
0029-5493,
137
, pp.
315
321
.
58.
Clos
,
R.
,
Schreppel
,
U.
,
Veit
,
P.
,
Zencker
,
U.
, and
Specht
,
E.
, 1994, “
Fracture Behavior of Steel 20 MnMoNi55 Under Stress Wave Loading
,”
J. Phys. IV
1155-4339,
4
, pp.
717
722
.
59.
Buchar
,
J.
,
Bĺlek
,
Z.
,
Kotoul
,
M.
, and
Bucki
,
M.
, 1984, “
Effect of Microstructure on the Crack Initiation at Stress Pulse Loading
,”
Mechanical Properties at High Rates Of Strain
,
J.
Harding
, ed.,
The Institute of Physics
,
Bristol, London
, pp.
237
244
.
60.
Mayer
,
U.
,
Srivastava
,
V. K.
, and
Maile
,
K.
, 2003, “
Determination of Dynamic Stress Intensity Factor of C/C-SiC Composites
,”
J. Phys. IV
1155-4339,
110
, pp.
735
740
.
61.
Diamaruya
,
M.
,
Kobayashi
,
H.
, and
Nonaka
,
T.
, 1997, “
Impact Tensile Strength and Fracture of Concrete
,”
J. Phys. IV
1155-4339,
7
, pp.
252
258
.
62.
Clos
,
R.
,
Schreppel
,
U.
,
Veit
,
P.
,
Zencker
,
U.
, and
Specht
,
E.
, 1994, “
Fracture Behavior of Steel 20 MnMoNi55 Under Stress Wave Loading
,”
J. Phys. IV
1155-4339,
4
, pp.
717
722
.
63.
Kussmaul
,
K.
, and
Mayer
,
U.
, 1997, “
Investigation of Dynamic Crack Propagation and Arrest for Pulse Loaded Specimens Made From a Modified MoV-Steel (KS22) by Means of a Hopkinson-Pressure-Bar
,”
J. Phys. IV
1155-4339,
7
, pp.
993
998
.
64.
Homma
,
H.
,
Kanto
,
Y.
,
Nakane
,
M.
, and
Yasunaga
,
Y.
, 1988, “
Dynamic Fracture of Circumferentially Notched Ti-6Al-4V Bar Due to Impact Loading
,”
Impact Loading and Dynamic Behaviour of Materials
,
C. Y.
Chiem
,
H. -D.
Kunze
, and
L. W.
Meyer
, eds.,
DGM Informationsgesellschaft
,
Verlag, West Germany
, pp.
169
176
.
65.
Lee
,
Y. -S.
,
Yoon
,
Y. -K.
, and
Yoon
,
H. -S.
, 2002, “
Dynamic Fracture Toughness of Chevron-Notch Ceramic Specimen Measured in Split Hopkinson Pressure Bar
,”
International Journal of the Korean Society of Precision Engineering
,
3
, pp.
69
75
.
66.
Nakano
,
M.
,
Kishida
,
K.
, and
Kataka
,
T.
, 1990, “
Fracture Toughness Measurement by Longitudinal Impact of Precracked Round Bar
,”
Dynamic Fracture Mechanics for the 1990’s
,
Homma
,
H.
,
Shockey
,
D. A.
, and
Yagawa
,
G.
, eds.,
American Society of Mechanical Engineers
,
New York
, pp.
32
37
.
67.
Nakano
,
M.
, and
Kishida
,
K.
, 1990, “
Measurement of Dynamic Fracture Toughness by Longitudinal Impact of Precracked Bound Bar
,”
Int. J. Pressure Vessel Piping
,
44
, pp.
3
15
.
68.
Klepaczko
,
J. R.
, 1979, “
Application of the Split Hopkinson Pressure Bar to Fracture Dynamic
,”
Mechanical Properties at High Rates of Strain
,
J.
Harding
, ed.,
The Institute of Physics
,
Bristol, London
, pp.
201
214
.
69.
Klepaczko
,
J. R.
, 1982, “
Discussion of a New Experimental Method in Measuring Fracture Toughness Initiation at High Loading Rates by Stress Waves
,”
ASME J. Eng. Mater. Technol.
0094-4289,
104
, pp.
29
35
.
70.
Andrzejewski
,
A.
,
Klepaczko
,
J.
, and
Pluvinage
,
G.
, 1981, “
Experimental Determination of High Loading Rate Effects on Fracture Toughness of Aluminum Alloys
,”
Advances in Fracture Research
(
Fracture
81
),
D.
Francois
,
C.
Bathias
,
B. A.
Bilby
,
Y.
D'escatha
,
J.
Knott
,
R.
Labbens
,
T. C.
Lindley
,
A.
Pelissier-Tanon
,
P.
Petrequin
,
A.
Pineau
,
J.
Poirier
,
G.
Sanz
,
E.
Sommer
, and
L. E.
Steele
, eds.,
DGM Informationsgesellschaft
,
Verlag, West Germany
, pp.
385
392
.
71.
Klepaczo
,
J. R.
, 1984, “
An Experimental Procedure to Determine J Integral Under High Loading Rates
,”
Mechanical Properties at High Rates of Strain
,
J.
Harding
, ed.,
The Institute of Physics
,
Bristol, London
, pp.
245
251
.
72.
Deana
,
W. F.
, and
Mohd Said
,
M. N.
, 1989, “
Effect of Loading Rate on the Fracture Toughness of Steel Weld Metals
,”
Res. Mech.
0143-0084,
28
, pp.
251
267
.
73.
Bayoumi
,
M. R.
,
Klepaczko
,
J. R.
, and
Bassim
,
M. N.
, 1984, “
Determination of Fracture Toughness JIc Under Quasi-Static and Dynamic Loading Conditions Using Wedge Loaded Specimens
,”
J. Test. Eval.
0090-3973,
12
, pp.
316
323
.
74.
Bassim
,
M. N.
,
Bayoumi
,
M. R.
,
Hsu
,
T. R.
, and
Matthews
,
J. R.
, 1986, “
Investigation of Dynamic JId for Alloy Steel Weldments Using the Split Hopkinson Bar
,”
J. Test. Eval.
0090-3973,
14
, pp.
229
235
.
75.
Bassim
,
M. N.
, 1995, “
Use of the Stretch Zone for the Characterization of Ductile Fracture
,”
J. Mater. Process. Technol.
0924-0136,
54
, pp.
109
113
.
76.
Bassim
,
M. N.
,
Matthews
,
J. R.
, and
Hyatt
,
C. V.
, 1992, “
Evaluation of Fracture Toughness of HSLA80 Steel at High Loading Rates Using Stretch Zone Measurements
,”
Eng. Fract. Mech.
0013-7944,
43
, pp.
297
303
.
77.
Klepaczko
,
J. R.
,
Bassim
,
M. N.
, and
Hsu
,
T. R.
, 1984, “
Fracture Toughness of Coal Under Quasi-Static and Impact Loading
,”
Eng. Fract. Mech.
0013-7944,
19
, pp.
305
316
.
78.
Eremenko
,
A. S.
,
Novikov
,
S. A.
,
Sinitsyn
,
V. A.
,
Pushkoy
,
V. A.
, and
Yakupov
,
M. M.
, 1996, “
Determination of Fracture Toughness and Fracture Energy of Brittle Materials Under Impact Wedging
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
37
, pp.
586
594
.
79.
Ghoul
,
A.
,
Bouabdallah
,
A.
, and
Petit
,
J.
, 1998, “
Initiation and Arrest of Cracks on Two Pipeline Steels at Low Temperature
,”
Exp. Mech.
0014-4851,
38
, pp.
37
41
.
80.
Pluvinage
,
G.
, and
Garnier
,
V.
, 1983, “
Effect of Larger Strain Rates on the Toughness of Steels
,”
Mec., Mater., Electr.
0025-6439,
401
, pp.
2
8
.
81.
Pluvinage
,
G.
, and
Marandet
,
B.
, 1984, “
Application of Local Fracture Criteria to Dynamic Fracture Toughness
,”
Advances in Fracture Research
(
Fracture
84
),
Pergamon Press
,
Oxford
, pp.
3151
3158
.
82.
Pluvinage
,
G.
, and
Tolba
,
B.
, 1988,
Probabilistic Aspect of Dynamic Fracture Mechanics
,
Impact Loading and Dynamic Behaviour of Materials
,
C. Y.
Chiem
,
H. -D.
Kunze
, and
L. W.
Meyer
, eds.,
DGM Informationsgesellschaft
,
Verlag, West Germany
, pp.
177
184
.
83.
Andrzejewski
,
A.
,
Klepaczko
,
J.
, and
Pluvinage
,
G.
, 1981, “
Experimental Dynamic Fracture Toughness
,”
Journal de Mécanique Appliquée
,
5
, pp.
345
366
, in French.
84.
Neviere
,
R.
,
Tolba
,
B.
, and
Pluvinage
,
G.
, 1986, “
Dynamic Fracture Toughens in Mixed Mode of a Magnesium Alloy
,”
Proceedings of the Sixth European Conference on Fracture
, ECF 6, Amsterdam, The Netherlands, June 15–20,
H. C.
van Elst
and
A.
Bakker
, eds., Engineering Materials Advisory Services, Warley, West Midlands, UK.
85.
Pluvinage
,
G.
, 1986, “
Recent Advances in the Determination of the Fracture Toughness of Metal Materials
,”
Matériaux et Techniques
,
74
, pp.
495
503
, in French.
86.
Bolshakov
,
A. P.
,
Kremenko
,
A. S.
,
Lupsha
,
V. A.
,
Novikov
,
S. A.
,
Sinitsyn
,
V. A.
, and
Yakupov
,
M. M.
, 1980, “
The Temperature and Rate Relationships of the Crack Resistance of Polymethyl Methacrylate With High Loading Rates
,”
Fiz.-Khim. Mekh.
0204-5958,
17
, pp.
79
82
.
87.
Bílek
,
Z.
,
Buchar
,
J.
, and
Holzmann
,
M.
, 1983, “
The Influence of Microstructure and Temperature on Static and Dynamic Fracture Initiation in Heat Resistant Steel
,”
Mechanical Behaviour of Materials-IV
,
Proceedings of the Fourth International Conference
, Stockholm, Sweden, Aug. 15–19,
J.
Carlsson
and
N. G.
Ohlson
, eds., pp.
1095
1099
.
88.
Buchar
,
J.
,
Humen
,
V.
, and
Bílek
,
Z.
, 1984, “
Photoelasticity Studies of a New Method of Fracture Toughness Evaluation at High Loading Rates
,”
Optical Methods in Dynamics of Fluids and Solids
,
M.
PíChal
, ed.,
Springer-Verlag
,
Berlin
, pp.
185
190
.
89.
Bílek
,
Z.
,
Buchar
,
J.
,
Martinez Esnaola
,
J. M.
, and
Maria Bastero
,
J.
, 1988, “
Influence of Fast Neutron Irradiation on Dynamic Fracture Toughness of Bainitic Steel
,”
J. Phys. Colloq.
0449-1947,
9
, pp.
159
166
.
90.
Sha
,
G.
,
Jiang
,
F.
,
Wang
,
D.
,
Liu
,
D. K.
, and
Liu
,
R. T.
, 2002, “
An Experimental-Numerical Method for Measuring Crack Propagating Velocities Under Stress Wave Loading
,”
Acta Metall. Sin.
0412-1961,
15
, pp.
556
562
.
91.
Sun
,
C. T.
, and
Han
,
C.
, 2004, “
A Method for Testing Interlaminar Dynamic Fracture Toughness of Polymeric Composites
,”
Composites, Part B
1359-8368,
35
, pp.
647
655
.
92.
Corran
,
R. S. J.
,
Benitez
,
F. G.
,
Harding
,
J.
,
Ruiz
,
C.
, and
Nojima
,
T.
, 1983, “
Towards the Development of a Dynamic Fracture Initiation Test
,”
Application of Fracture Mechanics to Materials and Structures
,
G. C.
Sih
,
E.
Sommer
, and
W.
Dahl
, eds.,
Martinus Nijhoff Publishers
,
The Hague
, pp.
443
454
.
93.
Corran
,
R. S. J.
,
Benitez
,
F. G.
,
Harding
,
J.
, and
Ruiz
,
C.
, 1984, “
A Discussion of Problems Encountered in the Dynamic Fracture Toughness Testing of Materials
,”
Mechanical Properties at High Rates of Strain
,
J.
Harding
, ed.,
The Institute of Physics
,
Bristol, London
, pp.
253
260
.
94.
Homma
,
H.
,
Kanto
,
Y.
, and
Tanaka
,
K.
, 1991, “
Cleavage Fracture Under Short Pulse Loading
,”
Colloq. Phys.
0449-1947,
1
, pp.
589
596
.
95.
Wada
,
H.
, 1992, “
Determination of Dynamic Fracture Toughness for PMMA
,”
Eng. Fract. Mech.
0013-7944,
41
, pp.
821
831
.
96.
Wada
,
H.
,
Seika
,
M.
,
Calder
,
C. A.
, and
Kennedy
,
T. C.
, 1993, “
Measurement of Impact Fracture Toughness for PMMA With Single-Point Bending Test Using an Air Gun
,”
Eng. Fract. Mech.
0013-7944,
46
, pp.
715
719
.
97.
Wada
,
H.
,
Seika
,
M.
,
Kennedy
,
T. C.
,
Calderand
,
C. A.
, and
Murase
,
K.
, 1996, “
Investigation of Loading Rate and Plate Thickness Effects on Dynamic Fracture Toughness of PMMA
,”
Eng. Fract. Mech.
0013-7944,
54
, pp.
805
811
.
98.
Weisbrod
,
G.
, and
Rittel
,
D.
, 2000, “
A Method for Dynamic Fracture Toughness Determination Using Short Beams
,”
Int. J. Fract.
0376-9429,
104
, pp.
89
103
.
99.
Rittel
,
D.
,
Pineau
,
A.
,
Clisson
,
J.
, and
Rota
,
L.
, 2002, “
On Testing of Charpy Specimens Using the One-Point Bend Impact Technique
,”
Exp. Mech.
0014-4851,
42
, pp.
247
252
.
100.
Rittel
,
D.
,
Tanguy
,
B.
,
Pineau
,
A.
, and
Thomas
,
T.
, 2002, “
Impact Fracture of a Ferritic Steel in the Lower Shelf Regime
,”
Int. J. Fract.
0376-9429,
117
, pp.
101
112
.
101.
Rittel
,
D.
,
Frage
,
N.
, and
Dariel
,
M. P.
, 2005, “
Dynamic Mechanical and Fracture Properties of an Infiltrated TiC-1080 Steel Cermet
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
697
715
.
102.
Rittel
,
D.
, and
Rosakis
,
A. J.
, 2005, “
Dynamic Fracture of Beryllium-Bearing Bulk Metallic Glass Systems: A Cross-Technique Comparison
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
1905
1919
.
103.
Rizal
,
S.
, and
Homma
,
H.
, 2000, “
Dimple Fracture Under Short Pulse Loading
,”
Int. J. Impact Eng.
0734-743X,
24
, pp.
69
83
.
104.
Rizal
,
S.
, and
Homma
,
H.
, 2000, “
Effect of Loading Rate and Stress-State on Dimple Fracture
,”
Mater. Sci. Res. Int.
1341-1683,
6
, pp.
123
130
.
105.
Gunawan
,
F. E.
,
Homma
,
H.
,
Shah
,
Q. H.
, and
Mihradi
,
S.
, 2002, “
Estimation of Dynamic Stress Intensity for One-Point Bend Specimen by Inverse Analysis
,”
JSME Int. J., Ser. A
1340-8046,
45
, pp.
388
394
.
106.
Rizal
,
S.
,
Homma
,
H.
,
Nazer
,
M.
, and
Kishida
,
E.
, 2002, “
Experimental Approach to Dimple Fracture Mechanisms Under Short Pulse Loading
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1377
1390
.
107.
Lana
,
S. S.
,
Homma
,
H.
, and
Nakazato
,
K.
, 2006, “
Viscoelastic Effect on the Fracture Toughness of GFRP: Experimental Approach
,”
Key Eng. Mater.
1013-9826,
306–308
, pp.
745
750
.
108.
Sakata
,
S.
,
Aoki
,
S.
, and
Kishimoto
,
K.
, 1989, “
Measurement of Dynamic Fracture Toughness of Ceramic Materials at Elevated Temperature by One-Point-Bend Impact Test
,”
Advances in Fracture Research
,
K.
Salama
,
K.
Ravi-Chander
,
D. M. R.
Taplin
, and
P.
Rama Rao
, eds.,
Pergamon Press
,
Oxford
, ICF7, pp.
827
836
.
109.
Kishimoto
,
K.
,
Takahashi
,
S.
, and
Aoki
,
S.
, 1991, “
One-Point-Bend Impact Testing of Ceramic Material
,”
Key Eng. Mater.
1013-9826,
51–52
, pp.
513
518
.
110.
Takahashi
,
S.
,
Kishimoto
,
K.
, and
Aoki
,
S.
, 1991, “
Impact Fracture Toughness Test of Ceramic Reinforced Metals
,”
Colloq. Phys.
0449-1947,
1
, pp.
769
774
.
111.
Rittel
,
D.
, and
Maigre
,
H.
, 1996, “
A Study of Mixed-Mode Dynamic Crack Initiation in PMMA
,”
Mech. Res. Commun.
0093-6413,
23
, pp.
475
481
.
112.
Rittel
,
D.
,
Levin
,
R.
, and
Maigre
,
H.
, 1997, “
The Influence of Mode-Mixity on Dynamic Failure Mode Transitions in Polycarbonate
,”
J. Phys IV
,
7
, pp.
861
866
. 0093-6413
113.
Rittel
,
D.
,
Levin
,
R.
, and
Maigre
,
H.
, 1997, “
On Dynamic Crack Initiation in Polycarbonate Under Mixed-Mode Loading
,”
Mech. Res. Commun.
0093-6413,
24
, pp.
57
64
.
114.
Rittel
,
D.
, 1998, “
The Influence of Temperature on Dynamic Failure Mode Transitions
,”
Mech. Mater.
0167-6636,
30
, pp.
217
227
.
115.
Rittel
,
D.
, 2005, “
A Hybrid Experimental-Numerical Investigation of Dynamic Shear Fracture
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
73
89
.
116.
Xu
,
Z.
,
Li
,
Y.
,
Liu
,
Y.
,
Luo
,
J.
, and
Chen
,
Y.
, 2006, “
Mode II Dynamic Fracture Toughness of Two High Strength Steels Under High Loading Rate
,”
Acta Metall. Sin.
0412-1961,
42
, pp.
635
640
, in Chinese.
117.
Wu
,
X. F.
, and
Dzenis
,
Y. A.
, 2005, “
Determination of Dynamic Delamination Toughness of a Graphite-Fiber/Epoxy Composite Using Hopkinson Pressure Bar
,”
Polym. Compos.
0272-8397,
26
, pp.
165
180
.
118.
Verma
,
S. K.
,
Kumar
,
P.
, and
Kishore
,
N. N.
, 1998, “
An Experimental Cum Numerical Technique to Determine Dynamic Interlaminar Fracture Toughness
,”
Eng. Fract. Mech.
0013-7944,
60
, pp.
583
596
.
119.
Kalthoff
,
J. F.
, 1986, “
Fracture Behavior Under High Rates of Loading
,”
Eng. Fract. Mech.
0013-7944,
23
, pp.
289
298
.
120.
Lambros
,
J.
, and
Rosakis
,
A. J.
, 1997, “
An Experimental Study of Dynamic Delamination of Thick Fiber Reinforced Polymeric Matrix Composites
,”
Exp. Mech.
0014-4851,
37
, pp.
360
366
.
121.
Bertram
,
A.
, and
Kalthoff
,
J. F.
, 2003, “
Crack Propagation Toughness of Rock for the Range From Low to High Crack Speeds
,”
Key Eng. Mater.
1013-9826,
251–252
, pp.
423
430
.
122.
Venkert
,
A.
,
Guduru
,
P. R.
, and
Ravichandran
,
G.
, 2001, “
Effect of Loading Rate on Fracture Morphology in a High Strength Ductile Steel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
, pp.
261
267
.
123.
Samudrala
,
O.
, and
Rosakis
,
A. J.
, 2003, “
Effect of Loading and Geometry on the Subsonic/Intersonic Transition of a Biomaterial Interface Crack
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
309
337
.
124.
Singh
,
R. P.
, and
Shuukla
,
A.
, 1996, “
Subsonic and Intersonic Crack Growth Along a Biomaterial Interface
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
919
924
.
125.
Mines
,
R. A. W.
, and
Ruiz
,
C.
, 1985, “
The Dynamic Behavior of the Instrumented Charpy-Test
,”
J. Phys. (France)
0302-0738,
46
pp.
187
196
.
126.
Ruiz
,
C.
, and
Mines
,
R. A. W.
, 1985, “
The Hopkinson Pressure Bar: An Alternative to the Instrumented Pendulum for Charpy Tests
,”
Int. J. Fract.
0376-9429,
29
, pp.
101
109
.
127.
Dutton
,
A. G.
, and
Mines
,
R. A. W.
, 1991, “
Analysis of Hopkinson Pressure Bar Loaded Instrumented Charpy Test Using Inertial Modeling Technique
,”
Int. J. Fract.
0376-9429,
51
, pp.
187
206
.
128.
Mines
,
R. A. W.
, and
McParland
,
S.
, 1994, “
The Effects of Strain Rate, Temperature and Constraint on the Large Scale Yielding Fracture Initiation Behaviour of a Mining Steel
,”
J. Phys. IV
1155-4339,
4
, pp.
753
758
.
129.
Bacon
,
C.
, 1993, “
Mesure de la tenacite dynamique de materiaux fragiles en flexion-trois-points ahaute temperature—Utilisation des barres de Hopkinson
,” Ph.D. thesis, University of Bordeaux, France.
130.
Bacon
,
C.
,
Farm
,
J.
, and
Lataillade
,
J. L.
, 1994, “
Dynamic Fracture Toughness Determined From Load-Point Displacement
,”
Exp. Mech.
0014-4851,
34
, pp.
217
222
.
131.
Bacon
,
C.
, 1993, “
Numerical Prediction of the Propagation of Elastic Waves in Longitudinally Impact Rods: Application to Hopkinson Testing
,”
Int. J. Impact Eng.
0734-743X,
13
, pp.
527
539
.
132.
Bacon
,
C.
, and
Lataillade
,
J. -L.
, 2001, “
Development of the Kolsky-Hopkinson Techniques and Applications for Non-Conventional Testing
,”
New Experimental Methods in Material Dynamics and Impact
,
W. K.
Nowacki
and
J. R.
Klepaczko
, eds.,
INB ZTUREK
,
Poland
, pp.
85
108
.
133.
Guo
,
W. G.
,
Li
,
Y. L.
, and
Liu
,
Y. Y.
, 1997, “
Analytical and Experimental Determination of Dynamic Impact Stress Intensity Factor for 40Cr Steel
,”
Theor. Appl. Fract. Mech.
0167-8442,
26
, pp.
29
34
.
134.
Zejian
,
X.
,
Li
,
Y.
,
Li
,
N.
, and
Liu
,
Y.
, 2006, “
Effect of Loading Rate on Mode I Dynamic Fracture Toughness of High Strength Steels 40Cr and 30CrMnSiNi2A
,”
Acta Metall. Sin.
0412-1961,
42
, pp.
965
970
, in Chinese.
135.
Anderson
,
C. E.
, Jr.
,
Popelar
,
C. H.
,
Nagy
,
A.
, and
Walker
,
J. D.
, 2000, “
A Novel Method for Determining Dynamic Fracture Toughness
,”
Shock Compression of Condensed Mater-1999
,
M. D.
Furnish
,
L. C.
Chhabildas
, and
R. S.
Hixson
, eds., pp.
505
508
.
136.
Popelar
,
C. H.
,
Anderson
,
C. E.
, Jr.
, and
Nagy
,
A.
, 2000, “
An Experimental Method for Determining Dynamic Facture Toughness
,”
Exp. Mech.
0014-4851,
40
, pp.
401
407
.
137.
Rubio
,
L.
,
Fernández-Sáez
,
J.
, and
Navarro
,
C.
, 2003, “
Determination of Dynamic Fracture-Initiation Toughness Using Three-Point Bending Tests in a Modified Hopkinson Pressure Bar
,”
Exp. Mech.
0014-4851,
43
, pp.
379
386
.
138.
Loya
,
J.
,
Villa
,
I.
,
Fernández-Sáez
,
J.
, and
Navarro
,
C.
, 2006, “
Determination of the Dynamic Stress Intensity Factor of a Specimen Under One-Point Bending From the Measurement of the Load-Point Displacement
,”
J. Phys. IV
1155-4339,
134
, pp.
827
832
.
139.
Loya
,
J.
,
Fernández-Sáez
,
J.
, and
Navarro
,
C.
, 2003, “
Numerical Simulation of Dynamic TPB Fracture Test in a Modified Hopkinson Bar
,”
J. Phys. IV
1155-4339,
110
, pp.
305
310
.
140.
Loya
,
J. A.
, and
Fernández-Sáez
,
J.
, 2008, “
Three-Dimensional Analysis of Dynamic Fracture of Al 7075-T651 TPB Specimens
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
2203
2219
.
141.
Irfan
,
M. A.
, and
Prakash
,
V.
, 2000, “
Dynamic Deformation and Fracture Behavior of Novel Damage Tolerant Discontinuously Reinforced Aluminum Composites
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4477
4507
.
142.
Martins
,
C. F.
, and
Prakash
,
V.
, 2002, “
Dynamic Fracture of Linear Medium Density Polyethylene
,”
Modeling the Performance of Engineering Structural Materials III
,
T. S.
Srivatsan
,
D. R.
Lesure
, and
E. M.
Taleff
, eds.,
TMS (The Minerals, Metals & Materials Society)
,
Warrendale, PA
, pp.
105
123
.
143.
Martins
,
C. F.
,
Irfan
,
M. A.
, and
Prakash
,
V.
, 2007, “
Dynamic Fracture of Linear Medium Density Polyethylene Under Impact Loading Conditions
,”
Mater. Sci. Eng., A
0921-5093,
465
, pp.
211
222
.
144.
Shazly
,
M.
,
Prakash
,
V.
, and
Draper
,
S.
, 2006, “
Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminides Alloys
,”
Dynamic Fracture Mechanics
,
A.
Shukla
, ed.,
World Scientific
,
Singapore
, pp.
310
338
.
145.
Srivastava
,
V. K.
, and
Maile
,
K.
, 2004, “
Measurement of Critical Stress Intensity Factor in C/C-SiC Composites Under Dynamic and Static Loading Conditions
,”
Compos. Sci. Technol.
0266-3538,
64
, pp.
1209
1217
.
146.
Jiang
,
F.
,
Liu
,
R.
,
Zhang
,
X.
,
Vecchio
,
K. S.
, and
Rohatgi
,
A.
, 2004, “
Evaluation of Dynamic Fracture Toughness KId by Hopkinson Pressure Bar Loaded Instrumented Charpy Impact Test
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
279
287
.
147.
Zhang
,
X.
,
Liu
,
R.
, and
Jiang
,
F.
, 2005, “
A Simple Method to Consider Inertia Effect in Determination of Dynamic Fracture Toughness
,”
Advances in Fracture and Damage Mechanics IV
,
M. H.
Aliabadi
and
M.
Guagliano
, ed.,
WIT Press
,
Ashurst Lodge, Southampton, UK
, pp.
625
630
.
148.
Singh
,
R. P.
, and
Parameswaran
,
V.
, 2003, “
An Experimental Investigation of Dynamic Crack Propagation in a Brittle Material Reinforced With a Ductile Layer
,”
Opt. Lasers Eng.
0143-8166,
40
, pp.
289
306
.
149.
Évora
,
V. M. F.
,
Jain
,
N.
, and
Shukla
,
A.
, 2005, “
Stress Intensity Factor and Crack Velocity Relationship for Polyester/TiO2 Nanocomposites
,”
Exp. Mech.
0014-4851,
45
, pp.
153
159
.
150.
Shukla
,
A.
,
Parameswaran
,
V.
,
Du
,
Y.
, and
Évora
,
V.
, 2006, “
Dynamic Crack Initiation and Propagation in Nanocomposite Materials
,”
Rev. Adv. Mater. Sci.
1606-5131,
13
, pp.
47
58
.
151.
Shukla
,
A.
,
Jain
,
N.
, and
Chona
,
R.
, 2007, “
A Review of Dynamic Fracture Studies in Functionally Graded Materials
,”
Strain
,
43
, pp.
76
95
. 0039-2103
152.
Evora
,
V. M. F.
, and
Shukla
,
A.
, 2003, “
Fabrication, Characterization, and Dynamic Behavior of Polyester/TiO2 Nanocomposites
,”
Mater. Sci. Eng., A
0921-5093,
361
, pp.
358
366
.
153.
Zou
,
G.
, and
Qu
,
J.
, 2007, “
The Influence of the End of the Incidence Pole on the KId of the Three Point Bending Specimen Tested by the SHPB
,”
Key Eng. Mater.
1013-9826,
334–335
, pp.
153
156
.
154.
Bouzid
,
S.
,
Nyoungue
,
A.
,
Azari
,
Z.
,
Bouaouadja
,
N.
, and
Pluvinage
,
G.
, 2001, “
Fracture Criterion for Glass Under Impact Loading
,”
Int. J. Impact Eng.
0734-743X,
25
, pp.
831
45
.
155.
Singh
,
R. P.
, and
Parameswaran
,
V.
, 2003, “
An Experimental Investigation of Dynamic Crack Propagation in a Brittle Material Reinforced With a Ductile Layer
,”
Opt. Lasers Eng.
0143-8166,
40
, pp.
289
306
.
156.
Stout
,
M. G.
,
Koss
,
D. A.
,
Liu
,
C.
, and
Idasetima
,
J.
, 1999, “
Damage Development in Carbon/Epoxy Laminates Under Quasi-Static and Dynamic Loading
,”
Compos. Sci. Technol.
0266-3538,
59
, pp.
2339
2350
.
157.
Tanaka
,
K.
,
Ogawa
,
K.
,
Nojima
,
T.
,
Kagatsume
,
T.
, and
Matsumoto
,
K.
, 1975, “
Hopkinson Bar Impact Bending Test
,”
19th Proceedings of the Joint Meetings of Material Research
, pp.
145
–146, in Japanese.
158.
Tanaka
,
K.
, and
Kagatsume
,
T.
, 1980, “
Impact Bending Test on Steel at Low Temperatures
,”
Bull. JSME
0021-3764,
23
, pp.
1736
1744
.
159.
Ogawa
,
K.
, and
Higashida
,
F.
, 1990, “
Impact Three-Point Bending Tests by Applying Ramped Incident Wave
,”
Reinforced Plastics
,
36
, pp.
123
129
, in Japanese.
160.
Li
,
Y.
,
Ramesh
,
K. T.
, and
Chin
,
E. S. C.
, 2003, “
Determination of the Dynamic Fracture Initiation Toughness of Metal-Ceramic Composites
,”
Key Eng. Mater.
1013-9826,
243–244
, pp.
57
62
.
161.
Zhou
,
F.
,
Molinari
,
J. -F.
, and
Li
,
Y.
, 2004, “
Three-Dimensional Numerical Simulations of Dynamic Fracture in Silicon Carbide Reinforced Aluminum
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1357
1378
.
162.
Bedouet
,
S.
,
Neu
,
R. W.
,
Fitoussi
,
J.
, and
Forsythe
,
K. M.
, 2002, “
Damage Evolution in Quasi-Isotropic SCS-6/Timetal 21S Under Quasi-Static and Dynamic Bending
,”
J. Compos. Mater.
0021-9983,
36
, pp.
365
384
.
163.
Park
,
S. W.
, and
Zhou
,
M.
, 1999, “
Separation of Elastic Waves in Split Hopkinson Bars Using One-Point Strain Measurements
,”
Exp. Mech.
0014-4851,
39
, pp.
287
294
.
164.
Park
,
S. W.
,
Zhou
,
M.
, and
Veazie
,
D. R.
, 2000, “
Time-Resolved Impact Response and Damage of Fiber-Reinforced Composite Laminates
,”
J. Compos. Mater.
0021-9983,
34
, pp.
879
904
.
165.
Nwosu
,
S. N.
,
Hui
,
D.
, and
Dutta
,
P. K.
, 2003, “
Dynamic Mode II Delamination Fracture of Unidirectional Graphite/Epoxy Composites
,”
Composites, Part B
1359-8368,
34
, pp.
303
316
.
166.
Nwosu
,
S. N.
, and
Czarnecki
,
G.
, 1997, “
Dynamic Crack Propagation and Perforation of Laminated Composites
,”
Proceedings of the 11th International Conference on Composite Materials (ICCM 11)
, Goal Coast, Australia, 14–18 July,
M. L.
Scott
, ed.,
Australian Composite Structures Society
,
Cambridge, England
, pp.
263
272
.
167.
Wosu
,
S. N.
, and
Hoy
,
D.
, 2006, “
Digital Imaging and Fractographical Analyses of Perforation-Induced Delamination of Laminated Graphite-Epoxy Composite
,”
J. Compos. Mater.
0021-9983,
40
, pp.
1577
1602
.
168.
Wosu
,
S. N.
,
Hui
,
D.
, and
Dutta
,
P. K.
, 2005, “
Dynamic Mixed-Mode I/II Delamination Fracture and Energy Release Rate of Unidirectional Graphite/Epoxy Composites
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
1531
1558
.
169.
Jiang
,
F.
,
Rohatgi
,
A.
,
Vecchio
,
K. S.
, and
Cheney
,
J. L.
, 2004, “
Analysis of Dynamic Response of Three-Point Bend Specimen
,”
Int. J. Fract.
0376-9429,
127
, pp.
147
165
.
170.
Jiang
,
F.
,
Vecchio
,
K. S.
, and
Rohatgi
,
A.
, 2004, “
Analysis of a Modified Split Hopkinson Pressure Bar Dynamic Fracture Test Using an Inertia Model
,”
Int. J. Fract.
0376-9429,
126
, pp.
143
164
.
171.
Jiang
,
F.
, and
Vecchio
,
K. S.
, 2007, “
Experimental Investigation of Dynamic Effects in a Two-Bar/Three-Point Bend Fracture Test
,”
Rev. Sci. Instrum.
0034-6748,
78
, pp.
063903
.
172.
Adharapurapu
,
R. R.
,
Jiang
,
F.
, and
Vecchio
,
K. S.
, 2006, “
Dynamic Fracture of Bovine Bone
,”
Mater. Sci. Eng., C
0928-4931,
26
, pp.
1325
1332
.
173.
Kulin
,
R. M.
,
Jiang
,
F.
, and
Vecchio
,
K. S.
, 2008, “
Aging and Loading Rate Effects on the Mechanical Behavior of Equine Bone
,”
JOM
1047-4838,
60
, pp.
39
44
.
174.
Jiang
,
F.
, and
Vecchio
,
K. S.
, 2007, “
Dynamic Effects in Hopkinson Bar Four-Point Bend Fracture
,”
Metall. Mater. Trans. A
1073-5623,
38
, pp.
2896
2906
.
175.
Jiang
,
F.
, and
Vecchio
,
K. S.
,, 2007, “
Fracture of Nitinol Under Quasi-Static and Dynamic Loadings
,”
Metall. Mater. Trans. A
1073-5623,
38
, pp.
2907
2915
.
176.
Jiang
,
F.
, and
Vecchio
,
K. S.
, 2009, “
Deformation and Fracture of Nano-NiFe Alloy Under Quasi-Static and Dynamic Loadings
,” unpublished.
177.
Weerasooriya
,
T.
,
Moy
,
P.
,
Casem
,
D.
,
Cheng
,
M.
, and
Chen
,
W.
, 2006, “
A Four-Point Bend Technique to Determine Dynamic Fracture Toughness of Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
89
, pp.
990
995
.
178.
Weerasooriya
,
T.
,
Moy
,
P.
,
Cheng
,
M.
, and
Chen
,
W.
, 2006, “
Fracture Toughness of PMMA as a Function of Loading Rate
,”
Proceedings of the 2006 SEM Annual Conference on Experimental Mechanics
, St. Louis, MO, Jun. 5–7, pp.
1
8
.
179.
Yokoyama
,
T.
, and
Kishida
,
K.
, 1987, “
A Novel Impact Three-Point Bend Test Method for Determining Dynamic Fracture Initiation Toughness
,”
Proceedings of the International Conference on Fracture and Fracture Mechanics
, Shanghai, China, p.
553
.
180.
Yokoyama
,
T.
, and
Kishida
,
K.
, 1988, “
Measurement of Dynamic Fracture Initiation Toughness by a Novel Impact Three-Point Bend Test Technique Using Hopkinson Pressure Bars
,”
Impact Loading and Dynamic Behaviour of Materials
,
C. Y.
Chiem
,
H. -D.
Kunze
, and
L. W.
Meyer
, eds.,
DGM Informationsgesellschaft
,
Verlag, West Germany
, pp.
273
280
.
181.
Yokoyama
,
T.
, and
Kishida
,
K.
, 1989, “
A Novel Impact Three-Point Bend Test Method for Determining Dynamic Fracture–Initiation Toughness
,”
Exp. Mech.
0014-4851,
29
, pp.
188
194
.
182.
Yokoyama
,
T.
, 1993, “
Determination of Dynamic Fracture-Initiation Toughness Using a Novel Impact Bend Test Procedure
,”
ASME J. Pressure Vessel Technol.
0094-9930,
115
, pp.
389
397
.
183.
Adachi
,
T.
, and
Arai
,
M.
, 2000, “
Evaluation of Dynamic Fracture Toughness of Unidirectional CFRP Laminates
,”
JSME Int. J., Ser. A
1340-8046,
43
, pp.
179
185
.
184.
Ogawa
,
K.
,
Sugiyama
,
F.
,
Pezzotti
,
G.
, and
Nishida
,
T.
, 1998, “
Impact Strength of Continuous-Carbon-Fiber-Reinforced Silicon Nitride Measured by Using the Split Hopkinson Pressure Bar
,”
J. Am. Ceram. Soc.
0002-7820,
81
, pp.
166
172
.
185.
Higashida
,
F.
, and
Ogawa
,
K.
, 1990, “
Impact Three-Point Bending Tests on FRP by Split-Hopkinson Bar Technique
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
39
, pp.
1462
1468
.
186.
Sugiyama
,
F.
,
Ishikawa
,
T.
,
Ogawa
,
K.
, and
Nishida
,
T.
, 1998, “
Fracture Strength of Fiber-Bonded Ceramic Composite Subjected to Static and Impact Bending
,”
JSME Int. J., Ser. A
1340-8046,
41
, pp.
494
502
.
187.
Kusaka
,
T.
,
Yamauchi
,
Y.
, and
Kurokawa
,
T.
, 1994, “
Effects of Strain Rate on Mode II Interlaminar Fracture Toughness in Carbon-Fibre/Epoxy Laminated Composites
,”
J. Phys. IV
1155-4339,
C8
, pp.
671
676
.
188.
Kusaka
,
T.
,
Kurokawa
,
T.
,
Hojo
,
M.
, and
Ochiai
,
S.
, 1998, “
Evaluation of Mode II Interlaminar Fracture Toughness of Composite Laminates Under Dynamic Loading
,”
Key Eng. Mater.
1013-9826,
141–143
, pp.
477
500
.
189.
Kusaka
,
T.
,
Hojo
,
M.
,
Kurokawa
,
T.
,
Nojima
,
T.
,
Ochiai
,
S.
, and
Mai
,
Y. -W.
, 1998, “
Rate Dependence of Mode I Fracture Behaviour in Carbon-Fibre/Epoxy Composite Laminates
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
591
602
.
190.
Kusaka
,
T.
,
Hojo
,
M.
,
Ochiai
,
S.
, and
Kurokawa
,
T.
, 1999, “
Rate-Dependent Mode II Interlaminar Fracture Behavior of Carbon-Fiber/Epoxy Composite Laminates
,”
Mater. Sci. Res. Int.
1341-1683,
5
, pp.
98
103
.
191.
Kusaka
,
T.
,
Horikawa
,
N.
, and
Masuda
,
M.
, 2000, “
Low-Velocity Impact Fracture Behaviour of Impact-Resistant Polymer Matrix Composite Laminates Under Mixed Mode Loading
,”
J. Phys. IV
1155-4339,
10
, pp.
317
322
.
192.
Kusaka
,
T.
,
Horikawa
,
N.
, and
Masuda
,
M.
, 2001, “
Experimental and Numerical Studies on Determination of Mixed Modes Interlaminar Fracture Toughness of Polymer Matrix Composite Materials Under Impact Loading
,”
Mater. Sci. Res. Int.
1341-1683,
STP-2
, pp.
171
176
.
193.
Kusaka
,
T.
, 2003, “
Experimental Characterization of Interlaminar Fracture Behavior in Polymer Matrix Composites Under Low-Velocity Impact Loading
,”
JSME Int. J., Ser. A
1340-8046,
46
, pp.
328
334
.
194.
Kusaka
,
T.
, 2000, “
Interlaminar Fracture Behavior of Polymer Matrix Composite Materials under Impact Loading
,”
Proceedings of the JSME/ASME International Conference on Materials and Processing
, Vol.
1
, pp.
52
57
.
195.
Kusaka
,
T.
, 2003, “
Characterization of Rate-Dependent Fracture Behavior of Polymer Matrix Composite Materials From Macroscopic and Microscopic Aspects
,”
Proceedings of the 2003 SEM Annual Conference and Exposition of Experimental and Applied Mechanics (SEM-2003)
, Charlotte, NC, Jun. 2–4, S30P05-1-8.
196.
Todo
,
M.
, and
Takahashi
,
K.
, 1998, “
Measurement of Dynamic Fracture Toughness of Polymeric Materials Using Impact Bend Test
,”
Engineering Science Reports, Kyushu University
,
20
, pp.
267
273
, in Japanese.
197.
Todo
,
M.
,
Tanaka
,
A.
, and
Arakawa
,
K.
, 2006, “
Examination of SHPB Type Impact Fracture Toughens Testing Method By Dynamic Finite Element Analysis
,”
J. Soc. Mater. Sci. Jpn
,
55
, pp.
813
818
, in Japanese.
198.
Todo
,
M.
, and
Takahashi
,
K.
, 2001, “
Displacement-Rate Dependence of the Bending Fracture Behavior of Interlayer-Toughened Carbon/Epoxy Composite
,”
Mater. Sci. Res. Int.
1341-1683,
2
, pp.
266
270
.
199.
Todo
,
M.
,
Takahashi
,
K.
, and
Higuchi
,
K.
, 2001, “
Effects of Loading-Rate on the Fracture Toughness of Epoxy Encapsulants for the LUNAR-A Penetractor
,”
Rep. Res. Inst. Appl. Mech. (Kyushu Univ.)
0023-6195,
121
, pp.
111
119
.
200.
Rubio-González
,
C.
,
Gallardo-González
,
J. A.
,
Mesmacque
,
G.
, and
Sanchez-Santana
,
U.
, 2008, “
Dynamic Fracture Toughness of Pre-Fatigued Materials
,”
Int. J. Fatigue
0142-1123,
30
, pp.
1056
1064
.
201.
Granier
,
N.
, and
Grunenwald
,
T.
, 2006, “
A Modified Split Hopkinson Pressure Bar for Toughness Tests
,”
J. Phys. IV
1155-4339,
134
, pp.
813
818
.
202.
Pignon
,
A.
,
Mathieu
,
G.
,
Richomme
,
S.
,
Margot
,
J. M.
, and
Delvare
,
F.
, 2006, “
Modified Split Hopkinson Pressure Bars for Dynamic Bending and Shear Tests
,”
J. Phys. IV
1155-4339,
134
, pp.
725
730
.
203.
Rittel
,
D.
,
Maigre
,
H.
, and
Bui
,
H. D.
, 1992, “
A New Method for Dynamic Fracture Toughness Testing
,”
Scr. Metall. Mater.
0956-716X,
26
, pp.
1593
1598
.
204.
Bui
,
H. D.
,
Maigre
,
H.
, and
Rittel
,
D.
, 1992, “
A New Approach to the Experimental Determination of the Dynamic Stress Intensity Factor
,”
Int. J. Solids Struct.
0020-7683,
29
, pp.
2881
2895
.
205.
Maigre
,
H.
, and
Rittel
,
D.
, 1993, “
Mixed-Mode Quantification for Dynamic Fracture Initiation: Application to the Compact Compression Specimen
,”
Int. J. Solids Struct.
0020-7683,
30
, pp.
3233
3244
.
206.
Maigre
,
H.
, and
Rittel
,
D.
, 1995, “
Dynamic Fracture Detection Using the Fore-Displacement Reciprocity: Application to the Compact Compressive Specimen
,”
Int. J. Fract.
0376-9429,
73
, pp.
67
79
.
207.
Rittel
,
D.
, and
Maigre
,
H.
, 1996, “
An Investigation of Dynamic Crack Initiation in PMMA
,”
Mech. Mater.
0167-6636,
23
, pp.
229
239
.
208.
Tedesco
,
J. W.
,
Ross
,
C. A.
, and
Brunair
,
R. M.
, 1989, “
Numerical Analysis of Dynamic Split Cylinder Tests
,”
Comput. Struct.
0045-7949,
32
, pp.
609
624
.
209.
Tedesco
,
J. W.
,
Ross
,
C. A.
,
McGill
,
P. B.
, and
O'Neil
,
B. P.
, 1991, “
Numerical Analysis of High Strain Rate Concrete Direct Tension Tests
,”
Comput. Struct.
0045-7949,
40
, pp.
313
327
.
210.
Hughes
,
M. L.
,
Tedesco
,
J. W.
, and
Ross
,
C. A.
, 1993, “
Numerical Analysis of High Strain Rate Splitting-Tensile Tests
,”
Comput. Struct.
0045-7949,
47
, pp.
653
671
.
211.
Tedesco
,
J. W.
,
Hughes
,
M. L.
, and
Ross
,
C. A.
, 1994, “
Numerical Simulation of High Strain Rate Concrete Compression Tests
,”
Comput. Struct.
0045-7949,
51
, pp.
65
77
.
212.
Tedesco
,
J. W.
, and
Ross
,
C. A.
, 1998, “
Strain-Rate-Dependent Constitutive Equations for Concrete
,”
ASME J. Pressure Vessel Technol.
0094-9930,
120
, pp.
398
405
.
213.
Ross
,
C. A.
, 1998, “
Effect of Dynamic Pre-Compression on the Dynamic Tensile Strength of Concrete and Mortar
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
361
, pp.
31
36
.
214.
Liu
,
C.
,
Huang
,
Y.
,
Lovato
,
M. L.
, and
Stout
,
M. G.
, 1997, “
Measurement of the Fracture Toughness of a Fiber-Reinforced Composite Using the Brazilian Disk Geometry
,”
Int. J. Fract.
0376-9429,
87
, pp.
241
263
.
215.
Rodríguez
,
J.
,
Navarro
,
C.
, and
Sánchez-Gálvez
,
V.
, 1994, “
Splitting Tests: An Alternative to Determine the Dynamic Tensile Strength of Ceramic Materials
,”
J. Phys. IV
1155-4339,
4
, pp.
101
106
.
216.
Nakano
,
M.
,
Kishida
,
K.
, and
Watanabe
,
Y.
, 1992, “
Mixed-Mode Impact Fracture Tests Using Center-Notched Disk Specimens
,”
Proceedings of the International Symposium on Impact Engineering
, Vol.
2
, pp.
581
586
.
217.
Nakano
,
M.
,
Kashida
,
K.
,
Yamauchi
,
Y.
, and
Sogabe
,
Y.
, 1994, “
Dynamic Fracture Initiation in Brittle Materials Under Combined Mode I/II
,”
J. Phys. IV
1155-4339,
4
, pp.
695
700
.
218.
Johnstone
,
C.
, and
Ruiz
,
C.
, 1995, “
Dynamic Testing of Ceramics Under Tensile Stress
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
2647
2656
.
219.
Ross
,
C. A.
, 1998, “
Effect of Dynamic Pre-Compression on the Dynamic Tensile Strength of Concrete and Mortar
,”
PVP (Am. Soc. Mech. Eng.)
0277-027X,
361
, pp.
31
36
.
220.
Lambert
,
D. E.
, and
Ross
,
C. A.
, 2000, “
Strain Rate Effects on Dynamic Fracture and Strength
,”
Int. J. Impact Eng.
0734-743X,
24
, pp.
985
998
.
221.
Ruiz
,
G.
,
Ortiz
,
M.
, and
Pandolfi
,
A.
, 2000, “
Three-Dimensional Finite-Element Simulation of the Dynamic Brazilian Tests on Concrete Cylinders
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
, pp.
963
994
.
222.
Quidot
,
M.
, 2003, “
Numerical Simulation of the Dynamic Brazilian Test on a High Filled Polymer
,”
J. Phys. IV
1155-4339,
110
, pp.
371
376
.
223.
Gálvez
,
F.
, and
Sánchez Galvez
,
V.
, 2003, “
Numerical Modeling of SHPB Splitting Tests
,”
J. Phys. IV
1155-4339,,
110
, pp.
347
352
.
224.
Galvez
,
F.
, and
Sanchez
,
G.
, 2003, “
Numerical Modeling of SHPB Splitting Tests
,”
J. Phys. IV
1155-4339,
110
, pp.
347
352
.
225.
Yu
,
R. C
,
Ruiz
,
G.
, and
Pandolfi
,
A.
, 2004, “
Numerical Investigation on the Dynamic Behavior of Advanced Ceramics
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
897
911
.
226.
Dong
,
S.
,
Wang
,
Y.
, and
Xia
,
Y.
, 2006, “
A Finite Element Analysis for Using Brazilian Disk in Split Hopkinson Pressure Bar to Investigate Dynamic Fracture Behavior of Brittle Polymer Materials
,”
Polym. Test.
0142-9418,
25
, pp.
943
952
.
227.
Zhou
,
J.
,
Wang
,
Y.
, and
Xia
,
Y.
, 2006, “
Mode–I Fracture Toughness of PMMA at High Loading Rates
,”
J. Mater. Sci.
0022-2461,
41
, pp.
8363
8366
.
228.
Li
,
W.
,
Xie
,
H. -P.
, and
Wang
,
Q. -Z.
, 2006, “
Experimental Study for the Dynamic Split Tension of Marble Disc Using SHPB
,”
Explos. and Shock Waves
,
26
, pp.
1001
1455
, in Chinese.
229.
Buchar
,
J.
, and
Rolc
,
S.
, 2006, “
Dynamic Fracture of Ceramics
,”
J. Phys. IV
1155-4339,
134
, pp.
681
686
.
230.
Jeong
,
J.
,
Adib-Ramezani
,
H.
, and
Pluvinage
,
G.
, 2006, “
Tensile Strength of the Brittle Materials, Probabilistic or Deterministic Approach?
,”
Strength Mater.
0039-2316,
38
, pp.
72
83
.
231.
Jeong
,
J.
, and
Adib-Ramezani
,
H.
, 2006, “
Effect of Specimen Shape on the Behavior of Brittle Materials Using Probabilistic and Deterministic Methods
,”
J. Eur. Ceram. Soc.
0955-2219,
26
, pp.
3621
3629
.
232.
Cai
,
M.
,
Kaiser
,
P. K.
,
Suorineni
,
F.
, and
Su
,
K.
, 2007, “
A Study on the Dynamic Behavior of the Meuse/Haute-Marne Argillite
,”
Phys. Chem. Earth Parts ABC
,
32
, pp.
907
916
. 1474-7065
233.
Gálvez
,
F.
,
Rodríguez
,
J.
, and
Sánchez
,
V.
, 1997, “
Tensile Strength Measurements of Ceramic Materials at High Rates of Strain
,”
J. Phys. (France)
0302-0738,
7
, pp.
151
155
.
234.
Grantham
,
S. G.
,
Siviour
,
C. R.
,
Proun
,
W. G.
, and
Field
,
J. E.
, 2004, “
High-Stain Rat Brazilian Testing of an Explosive Stimulant Using Speckle Metrology
,”
Meas. Sci. Technol.
0957-0233,
15
, pp.
1867
1870
.
235.
Wang
,
Q. Z.
, and
Jia
,
X. M.
, 2004, “
The Flattened Brazilian Disc Specimen Used for Testing Elastic, Modulus, Tensile Strength and Fracture Toughness of Brittle Rocks: Analysis and Numerical Results
,”
Int. J. Rock Mech. Min. Sci.
1365-1609,
41
, pp.
245
253
.
236.
Wang
,
Q. Z.
,
Li
,
W.
, and
Song
,
X. L.
, 2006, “
A Method for Testing Dynamic Tensile Strength and Elastic Modulus of Rock Materials Using SHPB
,”
Pure Appl. Geophys.
0033-4553,
163
, pp.
1091
1100
.
237.
Zhang
,
S.
, and
Wang
,
Q. Z.
, 2006, “
Method For Determination of Dynamic Fracture Toughness of Rock Using Holed-Crack Flattened Disc Specimen
,”
Chinese J. Geotech. Eng.
1000-4548,
28
, pp.
723
728
, in Chinese.
238.
Grégoire
,
D.
,
Maigre
,
H.
,
Réthoré
,
J.
, and
Combescure
,
A.
, 2007, “
Dynamic Crack Propagation Under Mixed-Mode Loading-Comparison Between Experiments and X-FEM Simulations
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
6517
6534
.
239.
Fairbainrn
,
E. M. R.
, and
Ulm
,
F. -J.
, 2002, “
A Tribute to Fernando L. L. B. Carneriro (1913–2001) Engineer and Scientist Who Invented the Brazilian Test
,”
Mater. Struct.
1359-5997,
35
, pp.
195
196
.
240.
2006, “
Standard Method of Test for Splitting Tensile Strength of Cylindrical Concrete Specimens
,”
Annual Book of ASTM Standards
, Vol.
04.02
,
ASTM International Standards Worldwide
,
West Conshohocken, PA
, ASTM C496/C496M-04, pp.
290
294
.
241.
Kishida
,
K.
,
Yokoyama
,
T.
, and
Nakano
,
M.
, 1984, “
Measurement Dynamic Fracture Toughness Based on the Split Hopkinson Bar Technique
,”
Mechanical Properties at High Rates of Strain
,
J.
Harding
, ed.,
Institute of Physics
,
Bristol, London
, pp.
221
228
.
242.
Zhang
,
Z. X.
,
Kou
,
S. Q.
,
Yu
,
J.
,
Yu
,
Y.
,
Jiang
,
L. G.
, and
Lindqvist
,
P. -A.
, 1999, “
Effects of Loading Rate on Rock Fracture
,”
Int. J. Rock Mech. Min. Sci.
1365-1609,
36
, pp.
597
611
.
243.
Zhang
,
Z. X.
,
Yu
,
J.
,
Kou
,
S. Q.
, and
Lindqvist
,
P. -A.
, 2001, “
Effects of High Temperatures on Dynamic Rock Fracture
,”
Int. J. Rock Mech. Min. Sci.
1365-1609,
38
, pp.
211
225
.
244.
Gray
,
G. T.
, III
, “
Classical Split-Hopkinson Pressure Bar Testing
,”
ASM Handbook
, Vol.
8
,
Mechanical Testing and Evaluation, ASM International
,
Materials Park OH
, pp.
462
476
.
245.
Al-Mousawi
,
M. M.
,
Reid
,
S. R.
, and
Deans
,
W. F.
, 1997, “
The Use of the Split Hopkinson Bar Pressure Bar Techniques in High Strain Rate Materials Testing
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
211
, pp.
273
292
.
246.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. W.
, Jr.
, 2004, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
Appl. Mech. Rev.
0003-6900,
57
, pp.
223
250
.
247.
Harding
,
J.
, and
Ruiz
,
C.
, 1998, “
Mechanical Behaviour of Composite Materials Under Impact Loading
,”
Key Eng. Mater.
1013-9826,
141–143
, pp.
403
426
.
248.
Field
,
J. E.
,
Walley
,
S. M.
,
Bourne
,
N. K.
, and
Huntley
,
J. M.
, 1994, “
Experimental Methods at High Rates of Strain
,”
J. Phys. IV
1155-4339,
4
, pp.
3
22
.
249.
Nilsson
,
F.
, 1984, “
Crack Growth Initiation and Propagation Under Dynamic Loading
,”
Mechanical Properties at High Rates of Strain
,
J.
Harding
, ed.,
The Institute of Physics
,
Bristol, London
, pp.
185
204
.
250.
Field
,
J. E.
,
Walley
,
S. M.
,
Proud
,
W. G.
,
Goldrein
,
H. T.
, and
Siviour
,
C. R.
, 2004, “
Review of Experimental Techniques for High Rate Deformation and Shock Studies
,”
Int. J. Impact Eng.
0734-743X,
30
, pp.
725
775
.
251.
Shockey
,
D.
, 1988, “
Recent Progress in Dynamic Fracture Testing and Treatment
,”
Impact Loading and Dynamic Behaviour of Materials
,
C. Y.
Chiem
,
H. -D.
Kunze
, and
L. W.
Meyer
, eds.,
DGM Informationsgesellschaft
,
Verlag, West Germany
, pp.
161
167
.
252.
Cox
,
B. N.
,
Gao
,
H.
,
Gross
,
D.
, and
Rittel
,
D.
, 2005, “
Modern Topics and Challenges in Dynamic Fracture
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
565
596
.
253.
Tippur
,
H. V.
, 2006, “
Optical Methods for Dynamic Fracture Mechanics
,”
Dynamic Fracture Mechanics
,
A.
Shukla
, ed.,
World Scientific
,
Singapore
, pp.
147
198
.
254.
Parameswaran
,
V.
, and
Shukla
,
A.
, 2006, “
On the Use of Strain Gauges in Dynamic Fracture
,”
Dynamic Fracture Mechanics
,
A.
Shukla
, ed.,
World Scientific
,
Singapore
, pp.
199
235
.
255.
Ireland
,
D. R.
, 1976, “
Critical Review of Instrumented Impact Testing
,”
Dynamic Fracture Toughness International Conference
,
The Welding Institute of American Society for Metals
,
London
, Effects Technology, Inc., Technical Report No. 79-55.
256.
Server
,
W. L.
, 1978, “
Impact Three Point Bend Testing for Notched and Precracked Specimens
,”
J. Test. Eval.
0090-3973,
6
, pp.
29
34
.
257.
1980, “
Proposed Standard Method of Test for Instrumented Impact Testing of Precracked Charpy Specimens of Metallic Materials
,” ASTM E24.03.03.
258.
Böhme
,
W.
, and
Kalthoff
,
J. F.
, 1982, “
The Behavior of Notched Bend Specimen In Impact Testing
,”
Int. J. Fract.
0376-9429,
20
, pp.
R139
143
.
259.
Kalthoff
,
J. F.
, 1985, “
On the Measurement of Dynamic Fracture Toughness—A Review of Recent Work
,”
Int. J. Fract.
0376-9429,
27
, pp.
277
298
.
260.
Crouch
,
B. A.
, 1993, “
Finite Element Modeling of the Three-Point Bend Impact Test
,”
Comput. Struct.
0045-7949,
48
, pp.
167
173
.
261.
Rokach
,
I. V.
, 2000,
Fracture of Polymers, Composites and Adhesives
,
Elsevier
,
New York
, pp.
383
394
.
262.
Marur
,
P. R.
, 1998, “
Charpy Specimen—A Simply Supported Beam or a Constrained Free-Free Beam?
,”
Eng. Fract. Mech.
0013-7944,
61
, pp.
369
386
.
263.
Marur
,
P. R.
,
Simha
,
K. R. Y.
, and
Nair
,
P. S.
, 1994, “
Dynamic Analysis of Three-Point Bend Specimen Under Impact
,”
Int. J. Fract.
0376-9429,
68
, pp.
261
273
.
264.
Landrein
,
P.
,
Lorriot
,
T.
, and
Guillaumat
,
L.
, 2001, “
Influence of Some Test Parameters in Specimen Loading Determination Method in Instrumented Charpy Impact Tests
,”
Eng. Fract. Mech.
0013-7944,
68
, pp.
1631
1645
.
265.
Lorriot
,
T.
,
Martin
,
E.
,
Quenisset
,
J. M.
, and
Rebiere
,
J. P.
, 1998, “
Dynamic Analysis of Instrumented Charpy Impact Testing Using Specimen Deflection Measurement and Mass-Spring Models
,”
Int. J. Fract.
0376-9429,
91
, pp.
299
309
.
266.
Böhme
,
W.
, 1988, “
The Influence of Stress Wave on the Dynamic Crack Tip Loading in Three-Point Bend Impact Testing
,”
Impact Loading and Dynamic Behavior of Materials
,
C. Y.
Chiem
,
H. -D.
Kunze
, and
L. W.
Meyer
, eds.,
DGM Informationsgesellschaft
,
Verlag, West Germany
, pp.
305
311
.
267.
Nakamura
,
T.
,
Shih
,
C. F.
, and
Freund
,
L. B.
, 1986, “
Analysis of a Dynamically Loaded Three-Point Bend Ductile Fracture Specimen
,”
Eng. Fract. Mech.
0013-7944,
25
, pp.
323
339
.
268.
Böhme
,
W.
, 1990,
Dynamic Key-Curves for Brittle Fracture Impact Tests and Establishment of a Transition Time
,
American Society for Testing and Materials
,
Philadelphia, PA
, ASTM1074, pp.
144
156
.
269.
Giovanola
,
J. H.
, 1986, “
Investigation and Application of the One-Point-Bend Impact Test
,”
Fracture Mechanics
,
J. H.
Underwood
,
R.
Chait
,
C. W.
Smith
,
D. P.
Wilhem
,
W. A.
Andres
, and
J. C.
Newman
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, ASTM STP 905, pp.
307
328
.
270.
Williams
,
J. G.
, and
Adams
,
G. C.
, 1987, “
The Analysis of Instrumented Impact Tests Using a Mass-Spring Model
,”
Int. J. Fract.
0376-9429,
33
, pp.
209
222
.
271.
Jiang
,
F.
,
Liu
,
R.
,
Zhang
,
X.
, and
Sa
,
G.
, 2002, “
Study of the Method Used for Measuring Dynamic Elastic-Plastic Fracture Toughness
,”
Journal of Mechanical Strength
,
24
, pp.
417
419
, in Chinese.
272.
Jian
,
F.
,
Fulian
,
D.
, and
Chengzhong
,
W.
, 2003, “
Experimental Study on the Material Dynamic Fracture Properties by Instrumented Charpy Impact Test With Single Specimen Method
,”
J. Phys. IV
1155-4339,
110
, pp.
551
557
.
273.
Kishimoto
,
K.
,
Fujino
,
Y.
,
Aoki
,
S.
, and
Sakata
,
M.
, 1990, “
A Simple Formula for the Dynamic Stress Intensity Factor of an Impacted Freely Support Bend Specimen
,”
JSME Int. J.
0913-185X,
33
, pp.
51
56
.
274.
Lundberg
,
B.
,
Carlsson
,
J.
, and
Sundin
,
K. G.
, 1990, “
Analysis of Elastic Waves in Non-Uniform Rods From Two-Point Strain Measurement
,”
J. Sound Vib.
0022-460X,
137
, pp.
483
493
.
275.
Gomez
,
J. T.
,
Shukla
,
A.
, and
Sharma
,
A.
, 2002, “
Photoelastic Evaluation of Stress Fields and Fracture During Dynamic Splitting Experiments
,”
J. Test. Eval.
0090-3973,
30
, pp.
186
196
.
276.
Singh
,
R. P.
, and
Shukla
,
A.
, 1996, “
Subsonic and Intersonic Crack Growth Along a Biomaterial Interface
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
919
924
.
277.
Manogg
,
P.
, 1964, “
Anwendungen der schattenoptik zur undersuchung des zerreissvorgags von platen
,” Ph.D. thesis, University of Freiburg, Freiburg, Germany.
278.
Anderson
,
D. D.
, and
Rosakis
,
A. J.
, 2005, “
Comparison of Three Real Time Techniques for the Measurement of Dynamic Fracture Initiation Toughness in Metals
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
535
555
.
279.
Zehnder
,
A. T.
, and
Rosakis
,
A. J.
, 1990, “
Dynamic Fracture Initiation and Propagation in 4340 Steel Under Impact Loading
,”
Int. J. Fract.
0376-9429,
43
, pp.
271
285
.
280.
Tippur
,
H. V.
,
Krishnawamy
,
S.
, and
Rosakis
,
A. J.
, 1991, “
A Coherent Gradient Sensor for Crack Tip Measurements: Analysis and Experimental Results
,”
Int. J. Fract.
0376-9429,
48
, pp.
193
204
.
281.
Rosakis
,
A. J.
,
Samudrala
,
O.
,
Singh
,
R. P.
, and
Shukla
,
A.
, 1998, “
Intersonic Crack Propagation in Bimaterial Systems
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1789
1813
.
282.
Rosakis
,
A. J.
, 1993, “
Two Optical Techniques Sensitive to Gradients of Optical Path Difference: The Method of Caustics and the Coherent Gradient Sensor
,”
Experimental Techniques in Fracture
,
J. S.
Epstein
, ed.,
VCH
,
New York
, pp.
327
425
.
283.
Syam
,
B.
,
Homma
,
H.
, and
Nakazato
,
K.
, 2000, “
Fracture Behaviors of GFRP Plates Subjected to Impulsive Loading
,”
Key Eng. Mater.
1013-9826,
183-187
, pp.
893
898
.
284.
Villa
,
I.
,
Loya
,
J. A.
, and
Fernández-Sáez
,
J.
, 2007, “
General Expressions for the Stress Intensity Factor of a One-Point Bend Beam
,”
Eng. Fract. Mech.
0013-7944,
74
, pp.
373
385
.
285.
Singh
,
R. P.
,
Lambros
,
J.
,
Shukla
,
A.
, and
Rosakis
,
A. J.
, 1997, “
Investigation of the Mechanics of Intersonic Crack Propagation Along a Bimaterial Interface Using Coherent Gradient Sensing and Photoelasticity
,”
Proc. R. Soc. London, Ser. A
0950-1207,
453
, pp.
2649
2667
.
286.
Shukla
,
A.
,
Chalivendra
,
V. B.
,
Parameswaran
,
V.
, and
Lee
,
K. H.
, 2003, “
Photoelastic Investigation of Interfacial Fracture Between Orthotropic and Isotropic Materials
,”
Opt. Lasers Eng.
0143-8166,
40
, pp.
307
324
.
287.
Jung
,
H. Y.
,
Epstein
,
J. S.
,
Deason
,
V. A.
, and
Reuter
,
W. G.
, 1991, “
Long Wavelength Impact of Izod Fracture Specimens: An Experimental/Numerical Investigation
,”
Experimental Mechanics
,
31
, pp.
281
287
.
288.
Khanna
,
S. K.
, and
Shukla
,
A.
, 1994, “
Development of Stress Field Equations and Determination of Stress Intensity Factor During Dynamic Fracture of Orthotropic Composites Materials
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
345
359
.
289.
Ricci
,
V.
,
Shukla
,
A.
, and
Kavaturu
,
M.
, 2003, “
Using Strain Gauges to Investigate Subsonic Interfacial Fracture in an Isotropic-Isotropic Biomaterial
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
1303
1321
.
290.
Ricci
,
V.
,
Shukla
,
A.
,
Chalivendra
,
V. B.
, and
Lee
,
K. H.
, 2003, “
Subsonic Interfacial Fracture Using Strain Gauges in an Isotropic-Orthotropic Biomaterial
,”
Theor. Appl. Fract. Mech.
0167-8442,
39
, pp.
143
161
.
291.
Khanna
,
S. K.
, and
Shukla
,
A.
, 1995, “
On the Use of Strain Gages in Dynamic Fracture Mechanics
,”
Eng. Fract. Mech.
0013-7944,
51
, pp.
933
948
.
292.
Jiang
,
F.
,
Rohatgi
,
A.
,
Vecchio
,
K. S.
, and
Adharapurapu
,
R. R.
, 2004, “
Crack Length Calculation for Bend Specimens Under Static and Dynamic Loading
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1971
1985
.
293.
Nigam
,
H.
, and
Shukla
,
A.
, 1988, “
Comparison of the Techniques of Transmitted Caustics and Photoelasticity as Applied Fracture
,”
Exp. Mech.
0014-4851,
28
, pp.
123
131
.
294.
Benitez
,
F. G.
, and
Hognestad
,
G.
, 1995, “
Test Equipment for Optical Evaluation of Strain Field Surrounding Crack Speeds in Graphite-Epoxy Laminates Under Impact Loading
,”
ASME Joint Applied Mechanics and Materials
, Los Angeles, CA, p.
109
.
295.
Benitez
,
F. G.
, and
Andrades
,
L.
, “
In-Plane Impact Loading of Composites: Optical Evaluation and Crack Severity Assessment for Graphite-Epoxy
,”
J. Phys. IV
1155-4339,
7
, pp.
169
173
(1997).
296.
Rousseau
,
C. E.
, 2006, “
Critical Examination of the Use of Coherent Gradient Sensing in Measuring Fracture Parameters in Functionally Graded Materials
,”
J. Compos. Mater.
0021-9983,
40
, pp.
1763
1782
.
297.
Qiqing
,
H. G.
, and
Chu
,
Y.
, 1987, “
Fracture of Materials Under Stress Wave Loading Dynamic COD Measurement by the Moiré Fringe Method and Hopkinson Bar
,”
Acta Mech. Solida Sinica
0894-9166,
1
, pp.
31
40
, in Chinese.
298.
Dally
,
J. W.
, and
Sanford
,
R. J.
, 1985, “
Strain Gauge Method for Measuring the Opening Mode Stress Intensity Factor
,”
SEM Spring Conference Proceeding
, Las Vegas, NV, p.
851
.
299.
Dally
,
J. W.
, and
Sanford
,
R. J.
, 1987, “
Strain-Gage Methods for Measuring the Opening-Mode Stress-Intensity Factor, KIC
,”
Exp. Mech.
0014-4851,
27
, pp.
381
388
.
300.
Dally
,
J. W.
, and
Barker
,
D. B.
, 1988, “
Dynamic Measurements of Initiation Toughness at High Loading Rates
,”
Exp. Mech.
0014-4851,
28
, pp.
298
303
.
301.
Parnas
,
L.
,
Bilir
,
Ö. G.
, and
Tezcan
,
E.
, 1996, “
Strain Gage Methods for Measurement of Opening Mode Stress Intensity Factor
,”
Eng. Fract. Mech.
0013-7944,
55
, pp.
485
492
.
302.
Kim
,
J. H.
,
Kim
,
D. H.
,
Moon
,
S. I.
, and
Kim
,
J. H.
, 2004, “
Determination of Dynamic Fracture Toughness Using Strain Measurement
,”
Key Eng. Mater.
1013-9826,
261–263
, pp.
313
318
.
303.
Shukla
,
A.
,
Agarwal
,
B. D.
, and
Bhushan
,
B.
, 1989, “
Determination of Stress Intensity Factor in Orthotropic Composite Materials Using Strain Gages
,”
Eng. Fract. Mech.
0013-7944,
32
, pp.
469
477
.
304.
Marur
,
P. R.
, and
Tippur
,
H. V.
, 2000, “
Dynamic Response of Biomaterial and Graded Interface Cracks Under Impact Loading
,”
Int. J. Fract.
0376-9429,
103
, pp.
95
109
.
305.
Nash
,
G. E.
, 1969, “
An Analysis of the Forces and Bending Moments Generated During the Notched Impact Test
,”
Int. J. Fract. Mech.
0020-7268,
5
, pp.
269
286
.
306.
Kishimoto
,
K.
,
Aoki
,
S.
, and
Sakata
,
M.
, 1980, “
Simple Formula for Dynamic Stress Intensity Factor of Pre-Cracked Charpy Specimen
,”
Eng. Fract. Mech.
0013-7944,
13
, pp.
501
508
.
307.
Kishimoto
,
K.
,
Kuroda
,
M.
,
Aoki
,
S.
, and
Sakata
,
M.
, 1984, “
Simple Formulas for Dynamic Fracture Mechanics Parameters of Elastic and Viscoelastic Three-Point Bend Specimen Based on Timoshenko’s Beam Theory
,”
Advances in Fracture Research
,
S. R.
Valluri
,
D. M. R.
Taplin
,
P.
Rama Rao
,
J. F.
Knott
,
M. F.
Ashby
,
S. N.
Bandyopadhyay
,
S.
Banerjee
,
L. F.
Coffin
,
J.
Carlsson
, and
Tu Lin
Chun
, eds.,
Pergamon Press
,
Oxford
, pp.
3177
3184
.
308.
Kishimoto
,
K.
,
Aoki
,
S.
, and
Sakata
,
M.
, 1988, “
Dynamic Fracture Mechanics Parameter Estimation for Three-Point Bend Specimen in Large Scale Yielding
,”
Impact Loading and Dynamic Behaviour of Materials
,
C. Y.
Chiem
,
H. -D.
Kunze
, and
L. W.
Meyer
, eds.,
DGM Informationsgesellschaft
,
Verlag, West Germany
, pp.
161
167
.
309.
Rokach
,
I. V.
, 1998, “
Modal Approach for Processing One- and Three-Point Bend Test Data for DSIF-Time Diagram Determination. Part I—Theory
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
21
, pp.
1007
1014
.
310.
Rokach
,
I. V.
, 1998, “
Modal Approach for Processing One- and Three-Point Bend Test Data for DSIF-Time Diagram Determination. Part II—Calculations and Results
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
21
, pp.
1015
1026
.
311.
Rokach
,
I. V.
, 1997, “
On the Influence of One-Point-Bend Impact Test Parameters on Dynamic Stress Intensity Factor Variation
,”
Mater. Sci. Eng., A
0921-5093,
234–236
, pp.
838
841
.
312.
Rokach
,
I. V.
, 1994, “
Comparison of Simplified Methods of Dynamic Stress Intensity Actors Evaluation
,”
Theor Appl. Mech.
0285-6042,
32
, pp.
203
212
.
313.
Rokach
,
I. V.
, 2003, “
On the Numerical Evaluation of the Anvil Force for Accurate Dynamic Stress Intensity Factor Determination
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
2059
2074
.
314.
Nishioka
,
T.
, and
Atluri
,
S. N.
, 1982, “
A Method for Determining Dynamic Stress Intensity Factors From COD Measurement at the Notch Mouth in Dynamic Tear Testing
,”
Eng. Fract. Mech.
0013-7944,
16
, pp.
333
339
.
315.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 2000,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
ASME
,
New York
.
316.
Bakker
,
A.
, 1990, “
Compatible Compliance and Stress Intensity Expressions for the Standard Three-Point Bend Specimen
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
13
, pp.
145
154
.
317.
Underwood
,
J. H.
,
Kapp
,
J. A.
, and
Barrata
,
F. I.
, 1985, “
More on Compliance of the Three-Point Bend Specimen
,”
Int. J. Fract.
0376-9429,
28
, pp.
R41
R45
.
318.
Parker
,
A. P.
, and
Bowie
,
O. L.
, 1983, “
The Weight Function for Various Boundary Conditions Problems
,”
Eng. Fract. Mech.
0013-7944,
18
, pp.
473
477
.
319.
Guinea
,
G. V.
,
Pastor
,
J. Y.
,
Planas
,
J.
, and
Elices
,
M.
, 1998, “
Stress Intensity Factor, Compliance and CMOD for a General Three-Point Bend Beam
,”
Int. J. Fract.
0376-9429,
89
, pp.
103
116
.
320.
Ninan
,
L.
,
Tsai
,
J.
, and
Sun
,
C. T.
, 2001, “
Use of Split Hopkinson Pressure Bar for Testing Off-Axis Composites
,”
Int. J. Impact Eng.
0734-743X,
25
, pp.
291
313
.
321.
Yang
,
L. M.
, and
Shim
,
V. P. W.
, 2005, “
An Analysis of Stress Uniformity in Split Hopkinson Bar Test Specimens
,”
Int. J. Impact Eng.
0734-743X,
31
, pp.
129
150
.
322.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
, 2002, “
Pulse Shaping Technique for Testing Brittle Materials With a Split Hopkinson Pressure Bar
,”
Exp. Mech.
0014-4851,
42
, pp.
93
106
.
323.
Vecchio
,
K. S.
, and
Jiang
,
F.
, 2007, “
Improved Pulse Shaping to Achieve Constant Strain Rate and Stress Equilibrium in Split-Hopkinson Pressure Bar Testing
,”
Metall. Mater. Trans. A
1073-5623,
38
, pp.
2655
2665
.
324.
Tanaka
,
K.
, and
Adachi
,
Y.
, 1973, “
Dynamic Strength Research by Hopkinson Bar Technique
,”
Journal of Japan Society for Aeronautical and Space Sciences
,
21
, pp.
126
134
, in Japanese.
325.
Sato
,
Y.
,
Matsut
,
S.
,
Kobayashi
,
M.
, and
Takahashi
,
H.
, 1988, “
A Compression Testing Technique at High Rates of Strain for Sheet Metals
,”
J. Phys. (France)
0302-0738,
9
, pp.
721
726
.
326.
Lok
,
T. S.
,
Asce
,
M.
,
Li
,
X. B.
,
Liu
,
D.
, and
Zhao
,
P. J.
, 2002, “
Testing and Response of Large Diameter Brittle Materials Subjected to High Strain Rate
,”
J. Mater. Civ. Eng.
0899-1561,
14
, pp.
262
269
.
327.
Ellwood
,
S.
,
Griffiths
,
L. J.
, and
Parry
,
D. J.
, 1982, “
Materials Testing at High Constant Strain Rates
,”
J. Phys. E
0022-3735,
15
, pp.
280
282
.
You do not currently have access to this content.