The last two decades have witnessed several advances in microfabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power sources, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to provide a continuous power supply. While linear vibratory energy harvesters have received the majority of the literature's attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to a common belief that they can be utilized to improve performance in ambient environments. Through a review of the open literature, this paper highlights the role of nonlinearities in the transduction of energy harvesters under different types of excitations and investigates the conditions, in terms of excitation nature and potential shape, under which such nonlinearities can be beneficial for energy harvesting.

References

1.
Gregori
,
S.
,
Li
,
Y.
,
Li
,
H.
,
Liu
,
J.
, and
Maloberti
,
F.
,
2004
, “
2.45 GHz Power and Data Transmission for a Low-Power Autonomous Sensors Platform
,”
International Symposium on Low Power Electronics and Design
, ISLPED 04, pp.
269
273
.
2.
Kim
,
J. W.
,
Takao
,
H.
,
Sawada
,
K.
, and
Ishida
,
M.
,
2007
, “
Integrated Inductors for RF Transmitters in CMOS/MEMS Smart Microsensor Systems
,”
Sensors
,
7
, pp.
1387
1398
.10.3390/s7081387
3.
Bracke
,
W.
,
Merken
,
P.
,
Puers
,
R.
, and
Van Hoof
,
C.
,
2007
, “
Generic Architectures and Design Methods for Autonomous Sensors
,”
Sens. Actuators A
,
135
, pp.
881
888
.10.1016/j.sna.2006.07.028
4.
Baerta
,
K.
,
Gyselinckxa
,
B.
,
Torfsa
,
T.
,
Leonova
,
V.
,
Yazicioglua
,
F.
,
Brebelsa
,
S.
,
Donnaya
,
S.
,
Vanfleterena
,
J.
,
Beyna
,
E.
, and
Van Hoof
,
C.
,
2006
, “
Technologies for Highly Miniaturized Autonomous Sensor Networks
,”
Microelectron. J.
,
37
, pp.
1563
1568
.10.1016/j.mejo.2006.04.018
5.
Paradiso
,
J. A.
, and
Starner
,
T.
,
2005
, “
Energy Scavenging for Mobile and Wireless Electronics
,”
IEEE Pervas. Comput.
,
4
, pp.
18
27
.10.1109/MPRV.2005.9
6.
Sodano
,
H.
,
Inman
,
D. J.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
, pp.
197
205
.10.1177/0583102404043275
7.
Sodano
,
H.
,
Inman
,
D. J.
, and
Park
,
G.
,
2005
, “
Generation and Storage of Electricity From Power Harvesting Devices
,”
J. Intell. Mater. Syst. Struct.
,
16
, pp.
67
75
.10.1177/1045389X05047210
8.
Roundy
,
S.
,
2005
, “
On the Effectiveness of Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Struct.
,
16
, pp.
809
823
.10.1177/1045389X05054042
9.
Sanders
,
R. S.
, and
Lee
,
M. T.
,
1995
, “
Implantable Pacemakers
,”
Proc. IEEE
,
84
, pp.
480
486
.10.1109/5.486749
10.
Karami
,
M. A.
, and
Inman
,
D. J.
,
2012
, “
Powering Pacemakers From Heartbeat Vibrations Using Linear and Nonlinear Energy Harvesters
,”
Appl. Phys. Lett.
,
100
(
4
), p.
042901
.10.1063/1.3679102
11.
Capel
,
I. D.
,
Dorrell
,
H. M.
,
Spencer
,
E. P.
, and
Davis
,
M. W.
,
2003
, “
The Amelioration of the Suffering Associated With Spinal Cord Injury With Subperception Transcranial Electrical Stimulation
,”
Spinal Cord
,
41
, pp.
109
117
.10.1038/sj.sc.3101401
12.
Renzenbrink
,
G.
, and
Jzerman
,
M. J.
,
2004
, “
Percutaneous Neuromuscular Electrical Stimulation for Treating Shoulder Pain in Chronic Hemiplegia. Effects on Shoulder Pain and Quality of Life
,”
Clin. Rehab
,
18
, pp.
359
365
.10.1191/0269215504cr759oa
13.
Iskos
,
D.
,
Lurie
,
K.
,
Sakaguchi
,
S.
, and
Benditt
,
D.
,
1997
, “
Termination of Implantable Pacemaker Therapy: Experience in Five Patients
,”
Ann. Intern. Med.
,
126
, pp.
787
790
.10.7326/0003-4819-126-10-199705150-00007
14.
Wardhana
,
K.
, and
Hadipriono
,
F.
,
2003
, “
Analysis of Recent Bridge Failures in the United States
,”
J. Perform. Construct. Facil.
,
17
, pp.
144
150
.10.1061/(ASCE)0887-3828(2003)17:3(144)
15.
Elvin
,
N.
,
Lajnef
,
N.
, and
Elvin
,
A.
,
2006
, “
Feasibility of Structural Monitoring With Vibration Powered Sensors
,”
Smart Mater. Struct.
,
15
, pp.
977
986
.10.1088/0964-1726/15/4/011
16.
Galchev
,
T. V.
,
McCullagh
,
J.
,
Peterson
,
R. L.
, and
Najafi
,
K.
,
2011
, “
Harvesting Traffic-Induced Vibrations for Structural Health Monitoring of Bridges
,”
J. Micromech. Microeng.
,
21
(
10
), p.
104005
.10.1088/0960-1317/21/10/104005
17.
Johnson
,
J. B.
,
1928
, “
Thermal Agitation of Electricity in Conductors
,”
Phys. Rev.
,
32
, pp.
97
109
.10.1103/PhysRev.32.97
18.
Yu
,
P.
,
Yuan
,
Y.
, and
Xu
,
J.
,
2002
, “
Study of Double Hopf Bifurcation and Chaos for an Oscillator With Time-Delayed Feedback
,”
Commun. Nonlinear Sci. Numer. Simul.
,
7
, p.
69
.10.1016/S1007-5704(02)00007-2
19.
Chau
,
H. L.
, and
Wise
,
K. D.
,
1987
, “
Noise Due to Brownian Motion in Ultrasensitive Solid-State Pressure Sensors
,”
IEEE Trans. Electron Devices
,
34
, pp.
859
865
.10.1109/T-ED.1987.23007
20.
Roundy
,
S.
, and
Zhang
,
Y.
,
2005
, “
Toward Self-Tuning Adaptive Vibration-Based Micro-Generators
,” Smart Materials, Nano- and Micro-Smart Systems, Sydney, Australia.
21.
Wu
,
W.
,
Chen
,
Y.
,
Lee
,
B.
,
He
,
J.
, and
Peng
,
Y.
,
2006
, “
Tunable Resonant Frequency Power Harvesting Devices
,”
Proceedings of Smart Structures and Materials Conference
, SPIE, San Diego, CA, p.
61690A
.
22.
Challa
,
V.
,
Prasad
,
M.
,
Shi
,
Y.
, and
Fisher
,
F.
,
2008
, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
75
, pp.
1
10
.
23.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters for Energy Scavenging
,”
J. Sound Vib.
,
292
, pp.
987
998
.10.1016/j.jsv.2005.08.018
24.
Shahruz
,
S. M.
,
2006
, “
Limits of Performance of Mechanical Band-Pass Filters Used in Energy Harvesting
,”
J. Sound Vib.
,
294
, pp.
449
461
.10.1016/j.jsv.2005.09.022
25.
Baker
,
J.
,
Roundy
,
S.
, and
Wright
,
P.
,
2005
, “
Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensors
,”
Proceedings of the Third International Energy Conversion Conference
, San Francisco, CA, pp.
959
970
.
26.
Rastegar
,
J.
,
Pereira
,
C.
, and
Nguyen
,
H. L.
,
2006
, “
Piezoelectric-Based Power Sources for Harvesting Energy From Platforms With Low Frequency Vibrations
,”
Proceedings of Smart Structures and Materials Conference
, SPIE, San Diego, CA, p.
617101
.
27.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
,
Wiley Interscience
,
New York
.
28.
Triplett
,
A.
, and
Quinn
,
D. D.
,
2009
, “
The Effect of Non-linear Piezoelectric Coupling on Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
20
(
16
), pp.
1959
1967
.10.1177/1045389X09343218
29.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2008
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
, pp.
515
530
.10.1016/j.jsv.2008.06.011
30.
Gammaitoni
,
L.
,
Neri
,
I.
, and
Vocca
,
H.
, 2009, “Nonlinear Oscillators for Vibration Energy Harvesting,”
Appl. Phys. Lett.
, (
16
), p.
164102
.
31.
Wickenheiser
,
A. M.
, and
Garcia
,
E.
, 2010, “Broadband Vibration-Based Energy Harvesting Improvement Through Frequency Up-Conversion by Magnetic Rectfication,”
Smart Mater. Struct.
,
19
(
6
), p.
065020
.
32.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
.10.1115/1.4002786
33.
Mann
,
B. P.
,
Barton
,
D. A. W.
, and
Owen
,
B.
,
2012
, “
Uncertainty in Performance for Linear and Nonlinear Energy Harvesting Strategies
,”
J. Intell. Mater. Syst. Struct.
,
23
, pp.
1451
1460
.10.1177/1045389X12439639
34.
Erturk
,
A.
, and
Inman
,
D.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
, p.
041002
.10.1115/1.2890402
35.
Stanton
,
S. C.
,
Erturk
,
A.
,
Mann
,
B. P.
,
Dowell
,
E. H.
, and
Inman
,
D. J.
,
2012
, “
Nonlinear Nonconservative Behavior and Modeling of Piezoelectric Energy Harvesters Including Proof Mass Effects
,”
J. Intell. Mater. Syst. Struct.
,
23
, pp.
183
199
.10.1177/1045389X11432656
36.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
, pp.
1063
1079
.10.1007/s11071-012-0327-0
37.
Hu
,
Y.
,
Xue
,
H.
,
Yang
,
J.
, and
Jiang
,
Q.
,
2006
, “
Nonlinear Behavior of a Piezoelectric Power Harvester Near Resonance
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
53
(
7
), pp.
1387
1391
.10.1109/TUFFC.2006.1665088
38.
Elvin
,
N.
, and
Elvin
,
A.
,
2012
, “
Large Deflection Effects in Flexible Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
,
23
, pp.
1475
1484
.10.1177/1045389X11435434
39.
Stanton
,
S. C.
,
Erturk
,
A.
,
Mann
,
B. P.
, and
Inman
,
D. J.
,
2010
, “
Nonlinear Piezoelectricity in Electroelastic Energy Harvesters: Modeling and Experimental Identification
,”
J. Appl. Phys.
,
108
(
7
), p.
074903
.10.1063/1.3486519
40.
Karami
,
M. A.
, and
Inman
,
D. J.
,
2011
, “
Equivalent Damping and Frequency Change for Linear and Nonlinear Hybrid Vibrational Energy Harvesting Systems
,”
J. Sound Vibr.
,
330
(
23
), pp.
5583
5597
.10.1016/j.jsv.2011.06.021
41.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
42.
Strogatz
,
S. H.
,
1994
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
Studies in Nonlinearity
),
Perseus, Cambridge
, UK.
43.
Szemplinska-Stupnicka
,
W.
,
2003
,
Chaos, Bifurcations and Fractals Around Us
,
World Scientific
,
Singapore
.
44.
Beeby
,
S. P.
,
Torah
,
R. N.
,
Tudor
,
M. J.
,
Glynne-Jones
,
P.
,
O'Donnell
,
T.
,
Saha
,
C. R.
, and
Roy
,
S.
,
2007
, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
17
(
7
), p.
1257
.10.1088/0960-1317/17/7/007
45.
Quinn
,
D.
,
Vakakis
,
D.
,
Alexander
,
F.
, and
Bergman
,
L. A.
,
2007
, “
Vibration-Based Energy Harvesting With Essential Nonlinearities
,”
2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, DETC2007, pp.
779
786
.
46.
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2007
, “
A Resonant Generator With Non-Linear Compliance for Energy Harvesting in High Vibrational Environments
,”
IEEE International Electric Machines Drives Conference
, 2007, IEMDC’07, Vol. 1, pp.
715
720
.
47.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.10.1115/1.4000809
48.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Phys. D
,
239
, pp.
640
653
.10.1016/j.physd.2010.01.019
49.
Sebald
,
G.
,
Kuwano
,
H.
,
Guyomar
,
D.
, and
Ducharne
,
B.
,
2011
, “
Experimental Duffing Oscillator for Broadband Piezoelectric Energy Harvesting
,”
Smart Mater. and Struct.
,
20
(
10
), p.
102001
.10.1088/0964-1726/20/10/102001
50.
Marinkovic
,
B.
, and
Koser
,
H.
,
2009
, “
Smart Sand—A Wide Bandwidth Vibration Energy Harvesting Platform
,”
Appl. Phys. Lett.
,
94
(
10
), p.
103505
.10.1063/1.3097207
51.
Tvedt
,
L. G. W.
,
Nguyen
,
D. S.
, and
Halvorsen
,
E.
,
2010
, “
Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide- and Narrowband Excitation
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
305
316
.10.1109/JMEMS.2009.2039017
52.
Miki
,
D.
,
Honzumi
,
M.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
,
2010
, “
Large-Amplitude MEMS Electret Generator With Nonlinear Springs
,”
2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS)
, pp.
176
179
.
53.
Nguyen
,
D. S.
,
Halvorsen
,
E.
,
Jensen
,
G. U.
, and
Vogl
,
A.
,
2010
, “
Fabrication and Characterization of a Wideband MEMS Energy Harvester Utilizing Nonlinear Springs
,”
J. Micromech. Microeng.
,
20
(
12
), p.
125009
.10.1088/0960-1317/20/12/125009
54.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Energy Harvesting From Impulsive Loads Using Intentional Essential Nonlinearities
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011004
.10.1115/1.4002787
55.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2011
, “
Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011001
.10.1115/1.4002782
56.
Sebald
,
G.
,
Kuwano
,
H.
,
Guyomar
,
D.
, and
Ducharne
,
B.
,
2011
, “
Simulation of a Duffing Oscillator for Broadband Piezoelectric Energy Harvesting
,”
Smart Mater. Struct.
,
20
(
7
), p.
075022
.10.1088/0964-1726/20/7/075022
57.
Gammaitoni
,
L.
,
Cottone
,
F.
,
Neri
,
I.
, and
Vocca
,
H.
,
2009
, “
Noise Harvesting
,”
AIP Conf. Proc.
,
1129
(
1
), pp.
651
654
.10.1063/1.3140558
58.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing Type Harvesters to Random Forced Excitations
,”
J. Sound Vibr.
,
329
, pp.
3621
3631
.10.1016/j.jsv.2010.04.002
59.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vibr.
,
330
(
11
), pp.
2554
2564
.10.1016/j.jsv.2010.12.005
60.
Halvorsen
,
E.
,
2013
, “
Fundamental Issues in Nonlinear Wide-Band Vibration Energy Harvesting
,”
Phys. Rev. E
,
87
, p. 042129.
61.
Green
,
P. L.
,
Worden
,
K.
,
Atalla
,
K.
, and
Sims
,
N. D.
,
2012
, “
The Benefits of Duffing-Type Nonlinearities and Electrical Optimisation of a Mono-stable Energy Harvester Under White Gaussian Excitations
,”
J. Sound Vibr.
,
331
, pp.
4504
4517
.10.1016/j.jsv.2012.04.035
62.
He
,
Q.
, and
Daqaq
,
M. F.
,
2013
, “
Load Optimization of a Nonlinear Mono-Stable Duffing-Type Harvester Operating in a White Noise Environment
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference
, IDETC/CIE 2013, Portland, OR.
63.
Nguyen
,
S. D.
, and
Halvorsen
,
E.
,
2011
, “
Nonlinear Springs for Bandwidth-Tolerant Vibration Energy Harvesting
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1225
1227
.10.1109/JMEMS.2011.2170824
64.
Lee
,
C.
,
Stamp
,
D.
,
Kapania
,
N. R.
, and
MurMiranda
,
J. O.
,
2010
, “
Harvesting Vibration Energy Using Nonlinear Oscillations of An Electromagnetic Inductor
,”
Proceedings of the 2010 SPIE Conference on Smart Structures/NDE
, San Diego, CA.
65.
Daqaq
,
M. F.
,
Stabler
,
C.
,
Qaroush
,
Y.
, and
Seuaciuc-Osório
,
T.
,
2009
, “
Investigation of Power Harvesting via Parametric Excitations
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
545
557
.10.1177/1045389X08100978
66.
Abdelkefi
,
A.
,
Nayfeh
,
A.
, and
Hajj
,
M.
,
2012
, “
Global Nonlinear Distributed-Parameter Model of Parametrically Excited Piezoelectric Energy Harvesters
,”
Nonlinear Dyn.
,
67
, pp.
1147
1160
.10.1007/s11071-011-0059-6
67.
Ma
,
T.
,
Xu
,
N.
, and
Zhang
,
H.
,
2010
, “A Nonlinear Method for Harvesting Mechanical Energy From Vibrations,” Proceedings of the 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration, Honolulu, HI, March 14–17.
68.
Daqaq
,
M. F.
, and
Bode
,
D.
,
2011
, “
Exploring the Parametric Amplification Phenomenon for Energy Harvesting
,”
Proc. Inst. Mech. Eng., Part I
,
225
(
4
), pp.
456
466
.
69.
McInnes
,
C.
,
Gorman
,
D.
, and
Cartmell
,
M.
,
2008
, “
Enhanced Vibrational Energy Harvesting Using Nonlinear Stochastic Resonance
,”
J. Sound Vibr.
,
318
, pp.
655
662
.10.1016/j.jsv.2008.07.017
70.
Benzi
,
R.
,
Parisi
,
G.
,
Sutera
,
A.
, and
Vulpiani
,
A.
,
1982
, “
Stochastic Resonance in Climatic Change
,”
Tellus
,
34
(
1
), pp.
10
16
.10.1111/j.2153-3490.1982.tb01787.x
71.
Longtin
,
A.
,
1993
, “
Stochastic Resonance in Neuron Models
,”
J. Stat. Phys.
,
70
(
1
), pp.
309
327
.10.1007/BF01053970
72.
Gammaitoni
,
L.
,
Marchesoni
,
F.
,
Menichella-Saetta
,
E.
, and
Santucci
,
S.
,
1989
, “
Stochastic Resonance in Bistable Systems
,”
Phys. Rev. Lett.
,
62
(
4
), pp.
349
352
.10.1103/PhysRevLett.62.349
73.
Gammaitoni
,
L.
,
Hänggi
,
P.
,
Jung
,
P.
, and
Marchesoni
,
F.
,
1998
, “
Stochastic Resonance
,”
Rev. Mod. Phys.
,
70
, pp.
223
287
.10.1103/RevModPhys.70.223
74.
Badzey
,
R. L.
, and
Mohanty
,
P.
,
2005
, “
Coherent Signal Amplification in Bistable Nanomechanical Oscillators by Stochastic Resonance
,”
Nature
,
437
(
7061
), pp.
995
998
.10.1038/nature04124
75.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
, p.
080601
.10.1103/PhysRevLett.102.080601
76.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.10.1063/1.3159815
77.
Moon
,
F. C.
, and
Holmes
,
P. J.
,
1979
, “
A Magnetoelastic Strange Attractor
,”
J. Sound Vibr.
,
65
, pp.
275
296
.10.1016/0022-460X(79)90520-0
78.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2009
, “
Relative Performance of a Vibratory Energy Harvester in Mono- and Bi-stable Potentials
,”
J. Sound Vibr.
,
330
(
24
), pp.
6036
6052
.10.1016/j.jsv.2011.07.031
79.
Sneller
,
A. J.
,
Cette
,
P.
, and
Mann
,
B. P.
,
2011
, “
Experimental Investigation of a Post-buckled Piezoelectric Beam With An Attached Central Mass Used to Harvest Energy
,”
Proc. Inst. Mech. Eng., Part I
,
225
(
4
), pp.
497
509
.10.1177/0957650910396417
80.
Friswell
,
M.
,
Ali
,
S. F.
,
Bilgen
,
O.
,
Adhikari
,
S.
,
Lees
,
A.
, and
Litak
,
G.
,
2012
, “
Nonlinear Piezoelectric Vibration Energy Harvesting From a Vertical Cantilever Beam With Tip Mass
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1505
1521
.10.1177/1045389X12455722
81.
Arietta
,
A. F.
,
Hagedorn
,
P.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104102
.10.1063/1.3487780
82.
Hyer
,
M. W.
,
1981
, “
Some Observations on the Curved Shape of Thin Unsymmetric Laminates
,”
J. Compos. Mater.
,
15
(
2
), pp.
175
194
.10.1177/002199838101500207
83.
Mann
,
B. P.
, and
Owens
,
B. A.
,
2010
, “
Investigations of a Nonlinear Energy Harvester With a Bistable Potential Well
,”
J. Sound Vibr.
,
329
, pp.
1215
1226
.10.1016/j.jsv.2009.11.034
84.
Ando
,
B.
,
Baglio
,
S.
,
Trigona
,
C.
,
Dumas
,
N.
,
Latorre
,
L.
, and
Nouet
,
P.
,
2010
, “
Nonlinear Mechanism in MEMS Devices for Energy Harvesting Applications
,”
J. Micromech. Microeng.
,
20
(
12
), p.
125020
.10.1088/0960-1317/20/12/125020
85.
Nguyen
,
S. D.
,
Halvorsen
,
E.
, and
Paprotny
,
I.
,
2013
, “
Bistable Springs for Wideband Microelectromechanical Energy Harvesters
,”
Appl. Phys. Lett.
,
102
(
2
), p.
023904
.10.1063/1.4775687
86.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2012
, “
Energy Harvesting in the Super-harmonic Frequency Region of a Twin-well Oscillator
,”
J. Appl. Phys.
,
111
(
4
), p.
044501
.10.1063/1.3684579
87.
Ferrari
,
M.
,
Bau
,
M.
,
Guizzetti
,
M.
, and
Ferrari
,
V.
,
2011
, “
A Single-Magnet Nonlinear Piezoelectric Converter for Enhanced Energy Harvesting From Random Vibrations
,”
Sens. Actuators A
,
172
(
1
), pp.
287
292
.10.1016/j.sna.2011.05.019
88.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Ando
,
B.
,
Baglio
,
S.
, and
Trigona
,
C.
,
2010
, “
Improved Energy Harvesting From Wideband Vibrations by Nonlinear Piezoelectric Converters
,”
Sens. Actuators A
,
162
(
2
), pp.
425
431
.10.1016/j.sna.2010.05.022
89.
Litak
,
G.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Magnetopiezoelastic Energy Harvesting Driven by Random Excitations
,”
Appl. Phys. Lett.
,
96
(
21
), p.
214103
.10.1063/1.3436553
90.
Lin
,
J.
,
Lee
,
B.
, and
Alphenaar
,
B.
,
2010
, “
The Magnetic Coupling of a Piezoelectric Cantilever for Enhanced Energy Harvesting Efficiency
,”
Smart Mater. Struct.
,
19
(
4
), p.
045012
.10.1088/0964-1726/19/4/045012
91.
Cammarano
,
A.
,
Burrow
,
S. G.
, and
Barton
,
D. A. W.
,
2011
, “
Modelling and Experimental Characterization of an Energy Harvester With Bi-Stable Compliance Characteristics
,”
Proc. Inst. Mech. Eng., Part I
,
225
(
4
), pp.
475
484
.10.1177/2041301710395077
92.
Ali
,
S. F.
,
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Narayanan
,
S.
,
2011
, “
The Analysis of Piezomagnetoelastic Energy Harvesters Under Broadband Random Excitations
,”
J. Appl. Phys.
,
109
(
7
), p.
074904
.10.1063/1.3560523
93.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of The Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vibr.
,
330
(
10
), pp.
2339
2353
.10.1016/j.jsv.2010.11.018
94.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley-Interscience
,
New York
.
95.
Stanton
,
S.
,
Owen
,
B.
, and
Mann
,
B.
,
2012
, “
Harmonic Balance Analysis of the Bistable Piezoelectric Inertial Generator
,”
J. Sound Vibr.
,
331
, pp.
3617
3627
.10.1016/j.jsv.2012.03.012
96.
Stanton
,
S.
,
Mann
,
B.
, and
Owen
,
B.
,
2012
, “
Melnikov Theoretic Methods for Characterizing the Dynamics of a Bistable Piezoelectric Inertial Generator in Complex Spectral Environments
,”
Phys. D
,
241
, pp.
711
720
.10.1016/j.physd.2011.12.010
97.
Harne
,
R. L.
,
Thota
,
M.
, and
Wang
,
K. W.
,
2013
, “
Concise and High-Fidelity Predictive Criteria for Maximizing Performance and Robustness of Bistable Energy Harvesters
,”
Appl. Phys. Lett.
,
102
, p.
053903
.10.1063/1.4790381
98.
Khovanova
,
N. A.
, and
Khovanov
,
I. A.
,
2011
, “
The Role of Excitations Statistic and Nonlinearity in Energy Harvesting From Random Impulsive Excitations
,”
Appl. Phys. Lett.
,
99
(
14
), p.
144101
.10.1063/1.3647556
99.
Neri
,
I.
,
Travasso
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2011
, “
Nonlinear Noise Harvesters for Nanosensors
,”
Nano Commun. Netw.
,
2
(
4
), pp.
230
234
.10.1016/j.nancom.2011.09.001
100.
Litak
,
G.
,
Borowiec
,
M.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2011
, “
Energy Harvesting in a Magnetopiezoelastic System Driven by Random Excitations With Uniform and Gaussian Distributions
,”
J. Theor. Appl. Mech.
,
49
, pp.
757
764
.
101.
Zhao
,
S.
, and
Erturk
,
A.
,
2013
, “
On the Stochastic Excitation of Monostable and Bistable Electroelastic Power Generators: Relative Advantages and Tradeoffs in a Physical System
,”
J. Appl. Phys.
,
102
, p.
103902
.
102.
Masana
,
R.
, and
Daqaq
,
M. F.
, “
Performance of a Duffing-Type Harvester in a Stochastic Environment
,”
J. Sound
Vibr. (submitted)
.
103.
Green
,
P. L.
,
Papatheou
,
E.
, and
Sims
,
N. D.
,
2013
, “
Energy Harvesting From Human Motion and Bridge Vibrations: An Evaluation of Current Nonlinear Energy Harvesting Solutions
,”
J. Intell. Mater. Syst. Struct.
,
24
, pp.
1494
1505
.10.1177/1045389X12473379
104.
Soliman
,
M.
,
Abdel-Rahman
,
E. M.
,
El-Saadany
,
E. F.
, and
Mansour
,
R. R.
,
2008
, “
A Wideband Vibration-Based Energy Harvester
,”
J. Micromech. Microeng.
,
18
, p.
115021
.10.1088/0960-1317/18/11/115021
105.
Soliman
,
M.
,
Abdel-Rahman
,
E. M.
,
El-Saadany
,
E. F.
, and
Mansour
,
R. R.
,
2009
, “
A Design Procedure for Wideband Micropower Generators
,”
J. Microelectromech. Syst.
,
18
, pp.
1288
1299
.10.1109/JMEMS.2009.2031695
106.
Hoffmann
,
D.
,
Folkmer
,
B.
, and
Manoli
,
Y.
,
2009
, “
Fabrication, Characterization and Modelling of Electrostatic Micro-Generators
,”
J. Micromech. Microeng.
,
19
, p.
094001
.10.1088/0960-1317/19/9/094001
107.
Le
,
C. P.
,
Halvorsen
,
E.
,
Srasen
,
O.
, and
Yeatman
,
E. M.
,
2012
, “
Microscale Electrostatic Energy Harvester Using Internal Impacts
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1409
1421
.10.1177/1045389X12436739
108.
Blystad
,
L. C. J.
, and
Halvorsen
,
E.
,
2012
, “
A Piezoelectric Energy Harvester With a Mechanical End Stop on One Side
,”
Microsyst. Technol.
,
17
(
4
), pp.
259
262
.
109.
Liu
,
H.
,
Tay
,
C. J.
,
Quan
,
C.
,
Kobayashi
,
T.
, and
Lee
,
C.
,
2011
, “
Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power
,”
J. Microelectromech. Syst.
,
20
(
5
), pp.
1131
1142
.10.1109/JMEMS.2011.2162488
110.
Sousa
,
V. C. de M.
Anicezio
,
M.
,
De Marqui
, Jr.,
C.
, and
Erturk
,
A.
,
2011
, “
Enhanced Aeroelastic Energy Harvesting by Exploiting Combined Nonlinearities: Theory and Experiment
,”
Smart Mater. Struct.
,
20
(
9
), p.
094007
.10.1088/0964-1726/20/9/094007
111.
duToit
,
N.
, and
Wardle
,
B.
,
2007
, “
Experimental Verification of Models for Microfabricated Piezoelectric Energy Harvesters
,”
AIAA J.
,
45
, pp.
1126
1137
.10.2514/1.25047
112.
Stanton
,
S. C.
,
Erturk
,
A.
,
Mann
,
B. P.
, and
Inman
,
D. J.
,
2010
, “
Resonant Manifestation of Intrinsic Nonlinearity Within Electroelastic Micropower Generators
,”
Appl. Phys. Lett.
,
97
(
25
), p.
254101
.10.1063/1.3530449
113.
Owens
,
B. A. M.
, and
Mann
,
B. P.
,
2012
, “
Linear and Nonlinear Electromagnetic Coupling Models in Vibration-Based Energy Harvesting
,”
J. Sound Vibr.
,
331
(
4
), pp.
922
937
.10.1016/j.jsv.2011.10.026
114.
Crawley
,
E. F.
, and
Anderson
,
E. H.
,
1990
, “
Detailed Models of Piezoceramic Actuation of Beams
,”
J. Intell. Mater. Syst. Struct.
,
1
, pp.
4
25
.10.1177/1045389X9000100102
115.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
,
2009
, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vibr.
,
320
(
1–2
), pp.
386
405
.10.1016/j.jsv.2008.07.029
116.
Anton
,
S. R.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2012
, “
Bending Strength of Piezoelectric Ceramics and Single Crystals for Multifunctional Load-Bearing Applications
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
59
, pp.
1085
1092
.10.1109/TUFFC.2012.2299
117.
Abdelkefi
,
A.
,
Nayfeh
,
A.
, and
Hajj
,
M.
,
2012
, “
Effects of Nonlinear Piezoelectric Coupling on Energy Harvesters Under Direct Excitation
,”
Nonlinear Dyn.
,
67
, pp.
1221
1232
.10.1007/s11071-011-0064-9
118.
Harne
,
R. L.
,
Thota
,
M.
, and
Wang
,
K. W.
,
2013
, “
Steady-State Dynamics of a Two Degree-of-Freedom Bistable Oscillator for Energy Harvesting
,”
Proceedings of the 2013 SPIE Conference on Smart Structures/NDE
, San Diego, CA.
119.
Oueini
,
S. S.
,
Chin
,
C.-M.
, and
Nayfeh
,
A. H.
,
1999
, “
Dynamics of a Cubic Nonlinear Vibration Absorber
,”
Nonlinear Dyn.
,
20
, pp.
283
295
.10.1023/A:1008358825502
You do not currently have access to this content.