A unifying description of the shared control architecture within the field of physical human–robot interaction (pHRI) facilitates the education of those being introduced to the field and the framing of new contributions to it. The authors' review of shared control within pHRI proposes such a unifying framework composed of three pillars. First, intent detection addresses the robot's interpretation of human goals, representing one-way communication. Second, arbitration manages the respective roles of the human and robot in the shared control. Third, feedback is the mechanism by which the robot returns information to the human, representing one-way communication in the opposite direction. Interpreting existing contributions through the lens of this framework brings out the importance of mechanical design, modeling, and state-based control.

References

1.
Computing Community Consortium,
2016
, “
A Roadmap for US Robotics: From Internet to Robotics
,” Computing Community Consortium, Washington, DC, accessed Feb. 5, 2018, http://jacobsschool.ucsd.edu/contextualrobotics/docs/rm3-final-rs.pdf
2.
SPARC Robotics,
2016
, “
Robotics 2020 Multi-Annual Roadmap for Robotics in Europe
,” SPARC Robotics, EU-Robotics AISBL, The Hauge, The Netherlands, accessed Feb. 5, 2018, https://www.eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
3.
Haddadin
,
S.
, and
Croft
,
E.
,
2016
, “
Physical Human-Robot Interaction
,”
Springer Handbook of Robotics
,
Springer International Publishing
, Berlin, pp.
1835
1874
.
4.
Losey
,
D. P.
,
McDonald
,
C. G.
,
Battaglia
,
E.
, and
O'Malley
,
M. K.
,
2018
, “
Review of Intent Detection, Arbitration, and Communication Aspects of Shared Control for Physical Human-Robot Interaction
,”
ASME Appl. Mech. Rev.
,
70
(1), p. 010804.
5.
Pehlivan
,
A. U.
,
Losey
,
D. P.
, and
O'Malley
,
M. K.
,
2016
, “
Minimal Assist-as-Needed Controller for Upper Limb Robotic Rehabilitation
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
113
124
.
6.
Varol
,
H. A.
,
Sup
,
F.
, and
Goldfarb
,
M.
,
2010
, “
Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis
,”
IEEE Trans. Biomed. Eng.
,
57
(
3
), pp.
542
551
.
7.
Young
,
A. J.
,
Simon
,
A.
, and
Hargrove
,
L. J.
,
2013
, “
An Intent Recognition Strategy for Transfemoral Amputee Ambulation Across Different Locomotion Modes
,”
International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Osaka, Japan, July 3–7, pp.
1587
1590
.
8.
Aarno
,
D.
,
Ekvall
,
S.
, and
Kragic
,
D.
,
2005
, “
Adaptive Virtual Fixtures for Machine-Assisted Teleoperation Tasks
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
1139
1144
.
9.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
R. Soc. B: Biol. Sci.
,
273
(
1603
), pp.
2861
2867
.
10.
Liu
,
Y.
,
Wensing
,
P. M.
,
Orin
,
D. E.
, and
Zheng
,
Y. F.
,
2015
, “
Dynamic Walking in a Humanoid Robot Based on a 3D Actuated Dual-SLIP Model
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
5710
5717
.
11.
Wensing
,
P. M.
, and
Revzen
,
S.
,
2017
, “
Template Models for Control
,”
Bioinspired Legged Locomotion
,
M.
Sharbafi
and
A.
Seyfarth
, eds.,
Elsevier
, Oxford, UK.
12.
McMullen
,
D. P.
,
Hotson
,
G.
,
Katyal
,
K. D.
,
Wester
,
B. A.
,
Fifer
,
M. S.
,
McGee
,
T. G.
,
Harris
,
A.
,
Johannes
,
M. S.
,
Vogelstein
,
R. J.
,
Ravitz
,
A. D.
, Anderson, W. S., Thakor, N. V., and Crone, N. E.,
2014
, “
Demonstration of a Semi-Autonomous Hybrid Brain-Machine Interface Using Human Intracranial EEG, Eye Tracking, and Computer Vision to Control a Robotic Upper Limb Prosthetic
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
4
), pp.
784
796
.
13.
Wakita
,
K.
,
Huang
,
J.
,
Di
,
P.
,
Sekiyama
,
K.
, and
Fukuda
,
T.
,
2013
, “
Human-Walking-Intention-Based Motion Control of an Omnidirectional-Type Cane Robot
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
285
296
.
14.
Shultz
,
A. H.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2015
, “
Running With a Powered Knee and Ankle Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
3
), pp.
403
412
.
15.
Zeilig
,
G.
,
Weingarden
,
H.
,
Zwecker
,
M.
,
Dudkiewicz
,
I.
,
Bloch
,
A.
, and
Esquenazi
,
A.
,
2012
, “
Safety and Tolerance of the ReWalk Exoskeleton Suit for Ambulation by People With Complete Spinal Cord Injury: A Pilot Study
,”
J. Spinal Cord Med.
,
35
(
2
), pp.
96
101
.
16.
Quintero
,
D.
,
Martin
,
A. E.
, and
Gregg
,
R. D.
,
2017
, “
Toward Unified Control of a Powered Prosthetic Leg: A Simulation Study
,”
IEEE Trans. Control Syst. Technol.
,
26
(
1
), pp.
305
312
.
17.
Asbeck
,
A. T.
,
De Rossi
,
S. M.
,
Galiana
,
I.
,
Ding
,
Y.
, and
Walsh
,
C. J.
,
2014
, “
Stronger, Smarter, Softer: Next-Generation Wearable Robots
,”
IEEE Rob. Autom. Mag.
,
21
(
4
), pp.
22
33
.
18.
Evrard
,
P.
, and
Kheddar
,
A.
,
2009
, “
Homotopy Switching Model for Dyad Haptic Interaction in Physical Collaborative Tasks
,”
World Haptics, Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Salt Lake City, UT, Mar. 18–20, pp.
45
50
.
19.
Medina
,
J. R.
,
Lorenz
,
T.
, and
Hirche
,
S.
,
2015
, “
Synthesizing Anticipatory Haptic Assistance Considering Human Behavior Uncertainty
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
180
190
.
20.
Hoffman
,
G.
, and
Breazeal
,
C.
,
2007
, “
Cost-Based Anticipatory Action Selection for Human-Robot Fluency
,”
IEEE Trans. Rob.
,
23
(
5
), pp.
952
961
.
21.
Beetz
,
M.
,
Stulp
,
F.
,
Esden-Tempski
,
P.
,
Fedrizzi
,
A.
,
Klank
,
U.
,
Kresse
,
I.
,
Maldonado
,
A.
, and
Ruiz
,
F.
,
2010
, “
Generality and Legibility in Mobile Manipulation
,”
Auton. Rob.
,
28
(
1
), pp.
21
44
.
22.
Dragan
,
A.
,
Lee
,
K.
, and
Srinivasa
,
S.
,
2013
, “
Legibility and Predictability of Robot Motion
,”
Eighth ACM/IEEE International Conference on Human-Robot Interaction
(
HRI
), Tokyo, Japan, Mar. 3–6, pp.
301
308
.
You do not currently have access to this content.