Redesign and Performance Analysis of a Transonic Axial Compressor Stator and Equivalent Plane Cascades With Subsonic Controlled Diffusion Blades

[+] Author and Article Information
R. Dunker, H. Rechter, H. Starken, H. Weyer

Propulsion Institute, DFVLR, 5000 Köln 90, West Germany

J. Eng. Gas Turbines Power 106(2), 279-287 (Apr 01, 1984) (9 pages) doi:10.1115/1.3239560 History: Received January 04, 1983; Online October 15, 2009


In order to verify a new controlled diffusion blade design concept, the stator of an existing transonic axial compressor stage was redesigned. Stator and equivalent cascade tests revealed the potential of such blades for a considerably higher aerodynamic loading than it has been applied up to now. The design procedure is described, and the results of plane cascade and stage testing are submitted, including performance analysis of both cascade and stator blade sections, at design and off-design operating conditions. The blade profile shapes and cascade geometries were calculated by means of an inverse, two-dimensional method taking also into account the axial velocity density ratio (AVDR). This design concept is essentially based on prescribed blade pressure distributions, which are optimized with respect to the blade boundary layer development. The flow phenomena are illustrated by means of loss and flow turning investigations, blade pressure distributions, and laser velocimetry data. The test results reveal that the two-dimensional approach applied is quite promising for the three-dimensional blade design. Finally, overall and blade element performance comparisons between the original NACA 65 profiled stator and the redesigned one demonstrate the favorable flow behavior of the new stator, as well as the great potential of the controlled diffusion blade concept.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In