Modeling of Three-Dimensional Flow in Turning Channels

[+] Author and Article Information
I. M. Khalil, H. G. Weber

Cummins Engine Company, Inc., Columbus, Ind. 47202-3005

J. Eng. Gas Turbines Power 106(3), 682-691 (Jul 01, 1984) (10 pages) doi:10.1115/1.3239624 History: Received December 27, 1983; Online October 15, 2009


The structure of developing flows inside curved channels has been investigated numerically using the time-averaged Navier Stokes equations in three dimensions. The equations are solved in primitive variables using finite difference techniques. The solution procedure involves a combination of repeated space-marching integration of the governing equations and correction for elliptic effects between two marching sweeps. Type-dependent differencing is used to permit downstream marching even in the reverse-flow regions. The procedure is shown to allow efficient calculations of turbulent flow inside strongly curved channels as well as laminar flow inside a moderately curved passage. Results obtained in both cases indicate that the flow structure is strongly controlled by local imbalance between centrifugal forces and pressure gradients. Furthermore, distortion of primary flow due to migration of low momentum fluid caused by secondary flow is found to be largely dependent on the Reynolds number and Dean number. Comparison with experimental data is also included.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In