Effect of Nonuniform Geometries on Flow Distributions and Heat Transfer Characteristics for Arrays of Impinging Jets

[+] Author and Article Information
L. W. Florschuetz, H. H. Tseng

Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, Ariz. 85287

J. Eng. Gas Turbines Power 107(1), 68-75 (Jan 01, 1985) (8 pages) doi:10.1115/1.3239699 History: Received January 11, 1984; Online October 15, 2009


Two-dimensional arrays of circular jets impinging on a surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the impingement surface. Experimental results for the effects of streamwise nonuniform array geometries on streamwise flow distributions and heat transfer characteristics are presented. A flow distribution model for nonuniform arrays is developed and validated by comparison with the measured flow distributions. The model is then employed to compare nonuniform array streamwise resolved heat transfer coefficient data with previously reported uniform array data and with a previously developed correlation based on the uniform array data. It was found that uniform array results can, in general, serve as a satisfactory basis from which to predict heat transfer coefficients at individual spanwise rows of nonuniform arrays. However, significant differences were observed in some cases over the first one or two rows downstream of the geometric transition line of the nonuniform array.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In