A Simple Method for Solving Three-Dimensional Inverse Problems of Turbomachine Flow and the Annular Constraint Condition

[+] Author and Article Information
Xiao-lu Zhao, Chun-lin Sun, Chung-Hua Wu

Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China

J. Eng. Gas Turbines Power 107(2), 293-300 (Apr 01, 1985) (8 pages) doi:10.1115/1.3239714 History: Received January 18, 1984; Online October 15, 2009


In 1950, Wu [1] suggested that the three-dimensional inverse (design) problem of turbomachine flow may be solved approximately by a Taylor series expansion in the circumferential direction based on the known flow variation over an S2 stream surface in the midchannel of the blade passage. This idea has been realized recently. A new coordinate transformation has been developed. The coordinate surfaces are coincident with the S2 stream surfaces. This transformation leads to a new method to calculate the aerodynamic equations of three-dimensional flow. By the use of this transformation, a high-order expansion is realized to determine the shape of the blade surfaces from the fluid state on the S2m stream surface directly. Computation in this manner soon leads to the discovery that theoretically the distribution of flow parameter (usually Vθ r) on S2m prescribed by the designer should satisfy a constraint condition, which guarantees that the S1 stream surfaces along the hub and shroud obtained from circumferential extension of the S2m surface are surfaces of revolution. An approximate method is suggested to meet this condition.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In