A Quasi-Three-Dimensional Turbomachinery Blade Design System: Part I—Throughflow Analysis

[+] Author and Article Information
I. K. Jennions, P. Stow

Theoretical Science Group, Rolls-Royce Limited, Derby DE2 8BJ, England

J. Eng. Gas Turbines Power 107(2), 301-307 (Apr 01, 1985) (7 pages) doi:10.1115/1.3239715 History: Received December 19, 1983; Online October 15, 2009


The purpose of this work has been to develop a quasi-three-dimensional blade design and analysis system incorporating fully linked throughflow, blade-to-blade and blade section stacking programs. In Part I of the paper, the throughflow analysis is developed. This is based on a rigorous passage averaging technique to derive throughflow equations valid inside a blade row. The advantages of this approach are that the meridional streamsurface does not have to be of a prescribed shape, and by introducing density weighted averages the continuity equation is of an exact form. Included in the equations are the effects of blade blockage, blade forces, blade-to-blade variations and loss. The solution of the equations is developed for the well-known streamline curvature method, and the contributions from these extra effects on the radial equilibrium equation are discussed. Part II of the paper incorporates the analysis into a quasi-three-dimensional computing system and demonstrates its operational feasibility.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In