Heat Transfer Enhancement in Channels With Turbulence Promoters

[+] Author and Article Information
J. C. Han, J. S. Park, C. K. Lei

Turbomachinery Laboratories, Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

J. Eng. Gas Turbines Power 107(3), 628-635 (Jul 01, 1985) (8 pages) doi:10.1115/1.3239782 History: Received July 01, 1984; Online October 15, 2009


Repeated rib roughness elements have been used in advanced turbine cooling designs to enhance the internal heat transfer. Often the ribs are perpendicular to the main flow direction so that they have an angle of attack of 90 deg. The objective of this investigation was to determine the effect of rib angle of attack on the pressure drop and the average heat transfer coefficients in the fully developed turbulent air flow in a square duct with two opposite rib-roughened walls for Reynolds number varied from 7000 to 90,000. The rib height-to-equivalent diameter ratio (e/D) was kept at a constant value of 0.063, the rib pitch-to-height ratio (P/e) was varied from 10 to 20, and the rib angle of attack (α) was varied from 90 to 60 to 45 to 30 deg, respectively. The thermal performance comparison indicated that the increased heat conductance for the rib with an oblique angle to the flow (α = 45–30 deg) was about 10–20 percent higher than the rib with a 90 deg angle to the flow, and the pumping power requirement for the angled rib was about 20–50 percent lower than the transverse rib. Semi-empirical correlations for friction factor and heat transfer coefficients were developed to account for rib spacing and rib angle. The correlations can be used in the design of turbine blade cooling passages.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In