Unsteady Pressure Measurements on a Biconvex Airfoil in a Transonic Oscillating Cascade

[+] Author and Article Information
L. M. Shaw, D. R. Boldman, A. E. Buggele

National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH

D. H. Buffum

Purdue University, West Lafayette, IN

J. Eng. Gas Turbines Power 108(1), 53-59 (Jan 01, 1986) (7 pages) doi:10.1115/1.3239885 History: Received January 18, 1985; Online October 15, 2009


Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfoils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence angle of 0.0 deg and a Mach number of 0.65 in order to obtain results in a shock-free compressible flow field. Subsequent tests were performed at an angle of attack of 7.0 deg and a Mach number of 0.80 in order to observe the surface pressure response with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and −90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semichord reduced frequencies up to about 0.5 at a Mach number of 0.80). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In