Flame Temperature Estimation of Conventional and Future Jet Fuels

[+] Author and Article Information
Ö. L. Gülder

National Research Council of Canada, Division of Mechanical Enginerring, Ottawa, Ontario K1A 0R6, Canada

J. Eng. Gas Turbines Power 108(2), 376-380 (Apr 01, 1986) (5 pages) doi:10.1115/1.3239914 History: Received December 18, 1984; Online October 15, 2009


An approximate formula is presented by means of which the adiabatic flame temperature of jet fuel-air systems can be calculated as functions of pressure, temperature, equivalence ratio, and hydrogen to carbon atomic ratio of the fuel. The formula has been developed by fitting of the data from a detailed chemical equilibrium code to a functional expression. Comparisons of the results from the proposed formula with the results obtained from a chemical equilibrium code have shown that the average error in estimated temperatures is around 0.4 percent, the maximum error being less than 0.8 percent. This formula provides a very fast and easy means of predicting flame temperatures as compared to thermodynamic equilibrium calculations, and it is also applicable to diesel fuels, gasolines, pure alkanes, and aromatics as well as jet fuels.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In